首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Machine Learning Methods for Attack Detection in the Smart Grid
【24h】

Machine Learning Methods for Attack Detection in the Smart Grid

机译:智能电网中攻击检测的机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.
机译:智能电网中的攻击检测问题被视为针对不同攻击场景的统计学习问题,在这些攻击场景中,以批处理或在线设置观察测量结果。在这种方法中,机器学习算法用于将测量结果分类为安全或受到攻击。提供了一种攻击检测框架,以利用有关系统的任何现有先验知识以及所提出方法中问题稀疏结构引起的超越约束。将著名的批处理和在线学习算法(监督和半监督)与决策级和特征级融合一起使用,以对攻击检测问题进行建模。使用统计学习方法分析了攻击场景中使用的攻击向量的统计和几何特性与学习算法之间的关系,以检测到不可观察的攻击。在各种IEEE测试系统上检查了提出的算法。实验分析表明,与所提出的攻击检测框架中采用状态矢量估计方法的攻击检测算法相比,机器学习算法能够检测出性能更高的攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号