首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Manifold Learning for Multivariate Variable-Length Sequences With an Application to Similarity Search
【24h】

Manifold Learning for Multivariate Variable-Length Sequences With an Application to Similarity Search

机译:多元可变长度序列的流形学习及其在相似度搜索中的应用

获取原文
获取原文并翻译 | 示例

摘要

Multivariate variable-length sequence data are becoming ubiquitous with the technological advancement in mobile devices and sensor networks. Such data are difficult to compare, visualize, and analyze due to the nonmetric nature of data sequence similarity measures. In this paper, we propose a general manifold learning framework for arbitrary-length multivariate data sequences driven by similarity/distance (parameter) learning in both the original data sequence space and the learned manifold. Our proposed algorithm transforms the data sequences in a nonmetric data sequence space into feature vectors in a manifold that preserves the data sequence space structure. In particular, the feature vectors in the manifold representing similar data sequences remain close to one another and far from the feature points corresponding to dissimilar data sequences. To achieve this objective, we assume a semisupervised setting where we have knowledge about whether some of data sequences are similar or dissimilar, called the instance-level constraints. Using this information, one learns the similarity measure for the data sequence space and the distance measures for the manifold. Moreover, we describe an approach to handle the similarity search problem given user-defined instance level constraints in the learned manifold using a consensus voting scheme. Experimental results on both synthetic data and real tropical cyclone sequence data are presented to demonstrate the feasibility of our manifold learning framework and the robustness of performing similarity search in the learned manifold.
机译:随着移动设备和传感器网络中技术的进步,多元可变长度序列数据变得无处不在。由于数据序列相似性度量的非度量性质,此类数据很难进行比较,可视化和分析。在本文中,我们为原始数据序列空间和已学习流形中的相似度/距离(参数)学习驱动的任意长度多元数据序列提出了一个通用流形学习框架。我们提出的算法将非度量数据序列空间中的数据序列转换为流形中的特征向量,以保留数据序列空间结构。特别地,代表相似数据序列的流形中的特征向量保持彼此接近并且远离对应于不相似数据序列的特征点。为了实现此目标,我们假设一个半监督的设置,在该设置下我们了解某些数据序列是相似还是相异(称为实例级约束)。使用此信息,可以了解数据序列空间的相似性度量和流形的距离度量。此外,我们描述了一种使用共识投票方案在给定用户定义实例级别约束的情况下处理相似性搜索问题的方法。提出了关于合成数据和真实热带气旋序列数据的实验结果,以证明我们的流形学习框架的可行性以及在学习的流形中执行相似性搜索的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号