首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Embedded Hardware-Efficient Real-Time Classification With Cascade Support Vector Machines
【24h】

Embedded Hardware-Efficient Real-Time Classification With Cascade Support Vector Machines

机译:级联支持向量机的嵌入式硬件高效实时分类

获取原文
获取原文并翻译 | 示例

摘要

Cascade support vector machines (SVMs) are optimized to efficiently handle problems, where the majority of the data belong to one of the two classes, such as image object classification, and hence can provide speedups over monolithic (single) SVM classifiers. However, SVM classification is a computationally demanding task and existing hardware architectures for SVMs only consider monolithic classifiers. This paper proposes the acceleration of cascade SVMs through a hybrid processing hardware architecture optimized for the cascade SVM classification flow, accompanied by a method to reduce the required hardware resources for its implementation, and a method to improve the classification speed utilizing cascade information to further discard data samples. The proposed SVM cascade architecture is implemented on a Spartan-6 field-programmable gate array (FPGA) platform and evaluated for object detection on (Super Video Graphics Array) resolution images. The proposed architecture, boosted by a neural network that processes cascade information, achieves a real-time processing rate of 40 frames/s for the benchmark face detection application. Furthermore, the hardware-reduction method results in the utilization of 25% less FPGA custom-logic resources and 20% peak power reduction compared with a baseline implementation.
机译:优化了级联支持向量机(SVM),以有效处理问题,其中大多数数据属于两个类别之一,例如图像对象分类,因此可以提供单块(单个)SVM分类器的加速。但是,SVM分类是一项计算量很大的任务,并且SVM的现有硬件体系结构仅考虑整体式分类器。本文提出了一种通过针对级联SVM分类流程优化的混合处理硬件体系结构来加速级联SVM的方法,同时提出了一种减少级联SVM实施所需硬件资源的方法,以及一种利用级联信息进一步丢弃的方法来提高分类速度的方法。数据样本。所提出的SVM级联体系结构在Spartan-6现场可编程门阵列(FPGA)平台上实现,并针对(超级视频图形阵列)分辨率图像上的对象检测进行了评估。所提出的体系结构由处理级联信息的神经网络增强,可为基准人脸检测应用程序实现40帧/秒的实时处理速率。此外,与基准实现相比,减少硬件的方法可减少25%的FPGA定制逻辑资源利用率,并减少20%的峰值功耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号