首页> 外文期刊>International journal of parallel programming >Boosting the Hardware-Efficiency of Cascade Support Vector Machines for Embedded Classification Applications
【24h】

Boosting the Hardware-Efficiency of Cascade Support Vector Machines for Embedded Classification Applications

机译:提高用于嵌入式分类应用的级联支持向量机的硬件效率

获取原文
获取原文并翻译 | 示例

摘要

Support Vector Machines (SVMs) are considered as a state-of-the-art classification algorithm capable of high accuracy rates for a different range of applications. When arranged in a cascade structure, SVMs can efficiently handle problems where the majority of data belongs to one of the two classes, such as image object classification, and hence can provide speedups over monolithic (single) SVM classifiers. However, the SVM classification process is still computationally demanding due to the number of support vectors. Consequently, in this paper we propose a hardware architecture optimized for cascaded SVM processing to boost performance and hardware efficiency, along with a hardware reduction method in order to reduce the overheads from the implementation of additional stages in the cascade, leading to significant resource and power savings. The architecture was evaluated for the application of object detection on $$800imes 600$$ 800 × 600 resolution images on a Spartan 6 Industrial Video Processing FPGA platform achieving over 30 frames-per-second. Moreover, by utilizing the proposed hardware reduction method we were able to reduce the utilization of FPGA custom-logic resources by $$sim $$ ∼ 30%, and simultaneously observed $$sim $$ ∼ 20% peak power reduction compared to a baseline implementation.
机译:支持向量机(SVM)被认为是一种最新的分类算法,能够针对不同的应用范围提供较高的准确率。当以级联结构排列时,SVM可以有效地处理大多数数据属于两个类别之一的问题,例如图像对象分类,因此可以提供单片(单个)SVM分类器的加速。然而,由于支持向量的数量,SVM分类过程仍然在计算上需要。因此,在本文中,我们提出了一种针对级联SVM处理进行了优化的硬件体系结构,以提高性能和硬件效率,并提出了一种硬件缩减方法,以减少级联中附加阶段的实施产生的开销,从而节省大量资源和功耗储蓄。在Spartan 6工业视频处理FPGA平台上实现了每秒30帧以上的速度,在800倍×600×800×600分辨率的图像上对对象检测的应用进行了评估。此外,通过使用所提出的硬件缩减方法,我们能够将FPGA定制逻辑资源的利用率降低$ sim $$〜30%,同时观察到$$ sim $$〜20%的峰值功率降低与基准实施相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号