首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Unified Approach to Adaptive Neural Control for Nonlinear Discrete-Time Systems With Nonlinear Dead-Zone Input
【24h】

A Unified Approach to Adaptive Neural Control for Nonlinear Discrete-Time Systems With Nonlinear Dead-Zone Input

机译:具有非线性死区输入的非线性离散系统的自适应神经控制的统一方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example.
机译:在本文中,构造了一种有效的自适应控制方法来稳定一类非线性离散时间系统,该系统包含未知函数,未知死区输入和未知控制方向。与线性死区不同,本文的死区是一种非线性死区。为了克服导致控制方案不可行的非因果问题,可以将系统转换为超前预测器。由于非线性死区的出现,转换后的预测变量仍包含非仿射函数。另外,假设死区输入的增益函数和控制方向未知。这些条件带来了控制器设计的困难和复杂性。因此,应用隐函数定理来处理非仿射死区的出现,可以通过应用离散的Nussbaum增益来解决由未知控制方向引起的问题,并使用神经网络来近似未知函数。基于李雅普诺夫理论,证明了所得闭环系统的所有信号都是半全局一致最终有界的。而且,证明跟踪误差被调​​节到零附近的小邻域。仿真实例证明了该方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号