首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A New Discriminative Sparse Representation Method for Robust Face Recognition via Regularization
【24h】

A New Discriminative Sparse Representation Method for Robust Face Recognition via Regularization

机译:基于正则化的鲁棒人脸识别新判别性稀疏表示方法

获取原文
获取原文并翻译 | 示例

摘要

Sparse representation has shown an attractive performance in a number of applications. However, the available sparse representation methods still suffer from some problems, and it is necessary to design more efficient methods. Particularly, to design a computationally inexpensive, easily solvable, and robust sparse representation method is a significant task. In this paper, we explore the issue of designing the simple, robust, and powerfully efficient sparse representation methods for image classification. The contributions of this paper are as follows. First, a novel discriminative sparse representation method is proposed and its noticeable performance in image classification is demonstrated by the experimental results. More importantly, the proposed method outperforms the existing state-of-the-art sparse representation methods. Second, the proposed method is not only very computationally efficient but also has an intuitive and easily understandable idea. It exploits a simple algorithm to obtain a closed-form solution and discriminative representation of the test sample. Third, the feasibility, computational efficiency, and remarkable classification accuracy of the proposed l regularization-based representation are comprehensively shown by extensive experiments and analysis. The code of the proposed method is available at http://www.yongxu.org/lunwen.html.
机译:稀疏表示已在许多应用程序中显示出有吸引力的性能。但是,可用的稀疏表示方法仍然存在一些问题,因此有必要设计更有效的方法。特别地,设计一种计算上便宜,易于解决且健壮的稀疏表示方法是一项重要的任务。在本文中,我们探讨了设计用于图像分类的简单,健壮和功能强大的稀疏表示方法的问题。本文的贡献如下。首先,提出了一种新的判别式稀疏表示方法,并通过实验结果证明了其在图像分类中的显着性能。更重要的是,所提出的方法优于现有的最新的稀疏表示方法。其次,提出的方法不仅计算效率很高,而且具有直观易懂的想法。它利用一种简单的算法来获得封闭形式的解决方案和测试样本的判别式表示。第三,通过广泛的实验和分析,全面展示了所提出的基于正则化的表示的可行性,计算效率和出色的分类精度。提议的方法的代码可从http://www.yongxu.org/lunwen.html获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号