首页> 外文期刊>Expert Systems with Application >An antinoise sparse representation method for robust face recognition via joint l(1) and l(2) regularization
【24h】

An antinoise sparse representation method for robust face recognition via joint l(1) and l(2) regularization

机译:通过联合l(1)和l(2)正则化的鲁棒人脸识别抗噪稀疏表示方法

获取原文
获取原文并翻译 | 示例

摘要

Sparse representation methods based on l(1) and/or l(2) regularization have shown promising performance in different applications. Previous studies show that the l(1) regularization based representation has more sparse property, while the l(2) regularization based representation is much simpler and faster. However, when dealing with noisy data, both naive l(1) and l(2) regularization suffer from the issue of unsatisfactory robustness. In this paper, we explore the method to implement an antinoise sparse representation method for robust face recognition based on a joint version of l(1) and l(2) regularization. The contributions of this paper are mainly shown in the following aspects. First, a novel objective function combining both l(1) and l(2) regularization is proposed to implement an antinoise sparse representation. An iterative fitting operation via l(1) regularization is integrated with l(2) norm minimization, to obtain an antinoise classification. Second, the rationale how the proposed method produces promising discriminative and antinoise performance for face recognition is analyzed. The l(2) regularization enhances robustness and runs fast, and l(1) regularization helps cope with the noisy data. Third, the classification robustness of the proposed method is demonstrated by extensive experiments on several benchmark facial datasets. The method can be considered as an option for the expert systems for biometrics and other recognition problems facing unstable and noisy data. (C) 2017 Elsevier Ltd. All rights reserved.
机译:基于l(1)和/或l(2)正则化的稀疏表示方法已显示出在不同应用程序中很有希望的性能。先前的研究表明,基于l(1)正则化的表示具有更稀疏的属性,而基于l(2)正则化的表示则更为简单和快捷。但是,当处理嘈杂的数据时,朴素的l(1)和l(2)正则化都会遇到鲁棒性不佳的问题。在本文中,我们探索了一种基于l(1)和l(2)正则化的联合版本实现用于鲁棒人脸识别的抗噪稀疏表示方法。本文的贡献主要体现在以下几个方面。首先,提出了一种新的结合l(1)和l(2)正则化的目标函数,以实现抗噪声的稀疏表示。通过l(1)正则化进行的迭代拟合操作与l(2)范数最小化集成在一起,以获得抗噪声分类。其次,分析了所提出的方法如何产生有希望的区分和抗噪性能以进行面部识别的原理。 l(2)正则化增强了鲁棒性并可以快速运行,而l(1)正则化有助于应对嘈杂的数据。第三,通过在几个基准面部数据集上的大量实验证明了该方法的分类鲁棒性。该方法可以被视为针对生物识别和面临不稳定和嘈杂数据的其他识别问题的专家系统的一种选择。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号