首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Stability of Recurrent Neural Networks With Time-Varying Delay via Flexible Terminal Method
【24h】

Stability of Recurrent Neural Networks With Time-Varying Delay via Flexible Terminal Method

机译:时变时滞的递归神经网络的柔性终端方法稳定性

获取原文
获取原文并翻译 | 示例

摘要

This brief is concerned with the stability criteria for recurrent neural networks with time-varying delay. First, based on convex combination technique, a delay interval with fixed terminals is changed into the one with flexible terminals, which is called flexible terminal method (FTM). Second, based on the FTM, a novel Lyapunov-Krasovskii functional is constructed, in which the integral interval associated with delayed variables is not fixed. Thus, the FTM can achieve the same effect as that of delay-partitioning method, while their implementary ways are different. Guided by FTM, Wirtinger-based integral inequality and free-weight matrix method are employed to develop several stability criteria, respectively. Finally, the feasibility and the effectiveness of the proposed results are tested by two numerical examples.
机译:该摘要涉及具有时变时滞的递归神经网络的稳定性标准。首先,基于凸组合技术,将具有固定端子的延迟间隔更改为具有柔性端子的延迟间隔,这称为柔性端子方法(FTM)。其次,基于FTM,构造了一种新颖的Lyapunov-Krasovskii泛函,其中与延迟变量相关的积分间隔不固定。因此,FTM可以实现与延迟分割方法相同的效果,但是其实现方式不同。在FTM的指导下,分别采用基于Wirtinger的积分不等式和自由权矩阵方法来制定几个稳定性标准。最后,通过两个数值例子验证了所提出结果的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号