首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Quantum Ensemble Classification: A Sampling-Based Learning Control Approach
【24h】

Quantum Ensemble Classification: A Sampling-Based Learning Control Approach

机译:量子集成分类:基于采样的学习控制方法

获取原文
获取原文并翻译 | 示例

摘要

Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.
机译:量子集成分类法(QEC)在原子(或分子)的鉴别,同位素分离和量子信息提取中具有重要的应用。但是,量子力学禁止非正交状态之间的确定性区分。非均质量子集成体的分类非常具有挑战性,因为在表征不同类别中的成员的参数中存在变化。在本文中,我们将QEC重铸为有监督的量子学习问题。通过使用基于采样的学习控制(SLC)方法进行量子判别,提出了一种系统的分类方法。通过同时将属于不同类别的成员引导到其相应的目标状态(例如,相互正交的状态)来完成分类任务。首先,针对两个相似的量子系统提出了一种新的判别方法。然后,提出了一种用于QEC的SLC方法。数值结果证明了该方法对二能级量子集成体的二元分类和多能级量子集成体的多类分类的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号