首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >An Online Unsupervised Structural Plasticity Algorithm for Spiking Neural Networks
【24h】

An Online Unsupervised Structural Plasticity Algorithm for Spiking Neural Networks

机译:尖峰神经网络的在线无监督结构可塑性算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel winner-take-all (WTA) architecture employing neurons with nonlinear dendrites and an online unsupervised structural plasticity rule for training it. Furthermore, to aid hardware implementations, our network employs only binary synapses. The proposed learning rule is inspired by spike-timing-dependent plasticity but differs for each dendrite based on its activation level. It trains the WTA network through formation and elimination of connections between inputs and synapses. To demonstrate the performance of the proposed network and learning rule, we employ it to solve two-class, four-class, and six-class classification of random Poisson spike time inputs. The results indicate that by proper tuning of the inhibitory time constant of the WTA, a tradeoff between specificity and sensitivity of the network can be achieved. We use the inhibitory time constant to set the number of subpatterns per pattern we want to detect. We show that while the percentages of successful trials are 92%, 88%, and 82% for two-class, four-class, and six-class classification when no pattern subdivisions are made, it increases to 100% when each pattern is subdivided into 5 or 10 subpatterns. However, the former scenario of no pattern subdivision is more jitter resilient than the later ones.
机译:在本文中,我们提出了一种新颖的赢家通吃(WTA)架构,该架构采用具有非线性树突的神经元和在线无监督结构可塑性规则进行训练。此外,为了帮助硬件实施,我们的网络仅采用二进制突触。拟议的学习规则是受与峰值定时相关的可塑性启发的,但对于每个枝晶,根据其激活水平而有所不同。它通过形成和消除输入和突触之间的连接来训练WTA网络。为了证明所提出的网络和学习规则的性能,我们将其用于求解随机Poisson尖峰时间输入的两类,四类和六类分类。结果表明,通过适当调整WTA的抑制时间常数,可以在网络的特异性和敏感性之间进行权衡。我们使用抑制时间常数来设置要检测的每个图案的子图案数量。我们显示,当不进行模式细分时,对于两类,四类和六类分类,成功试验的百分比分别为92%,88%和82%,但是当对每种模型进行细分时,成功试验的百分比将增加到100%分成5或10个子模式。但是,没有模式细分的前一种情况比后一种情况具有更高的抖动弹性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号