首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Finite-Time State Estimation for Coupled Markovian Neural Networks With Sensor Nonlinearities
【24h】

Finite-Time State Estimation for Coupled Markovian Neural Networks With Sensor Nonlinearities

机译:具有传感器非线性的耦合马尔可夫神经网络的有限时间状态估计

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measurements, and the estimation error system is derived by using the Kronecker product. By using the Lyapunov method, sufficient conditions are established, which guarantee that the estimation error system is stochastically finite-time bounded and stochastically finite-time stable, respectively. Then, the estimator gains are obtained via solving a set of coupled linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed new design method.
机译:本文研究了考虑传感器非线性的耦合马尔可夫神经网络的有限时间状态估计问题,其中考虑了转移概率部分未知的马尔可夫链。提出了一种基于不完备测量的Luenberger型状态估计器,并利用Kronecker乘积推导了估计误差系统。通过使用Lyapunov方法,建立了充分的条件,这保证了估计误差系统分别是随机有限时间有界和随机有限时间稳定的。然后,通过求解一组耦合线性矩阵不等式获得估计器增益。最后,通过数值算例说明了所提出的新设计方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号