首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Iterative Learning Model Predictive Control Based on Iterative Data-Driven Modeling
【24h】

Iterative Learning Model Predictive Control Based on Iterative Data-Driven Modeling

机译:基于迭代数据驱动建模的迭代学习模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

Iterative learning model predictive control (ILMPC) has been recognized as an effective approach to realize high-precision tracking for batch processes with repetitive nature because of its excellent learning ability and closed-loop stability property. However, as a model-based strategy, ILMPC suffers from the unavailability of accurate first principal model in many complex nonlinear batch systems. On account of the abundant process data, nonlinear dynamics of batch systems can be identified precisely along the trials by neural network (NN), making it enforceable to design a data-driven ILMPC. In this article, by using a control-affine feedforward neural network (CAFNN), the features in the process data of the former batch are extracted to form a nonlinear affine model for the controller design in the current batch. Based on the CAFNN model, the ILMPC is formulated in a tube framework to attenuate the influence of modeling errors and track the reference trajectory with sustained accuracy. Due to the control-affine structure, the gradients of the objective function can be analytically computed offline, so as to improve the online computational efficiency and optimization feasibility of the tube ILMPC. The robust stability and the convergence of the data-driven ILMPC system are analyzed theoretically. The simulation on a typical batch reactor verifies the effectiveness of the proposed control method.
机译:迭代学习模型预测控制(ILMPC)已被认为是一种有效的方法,以实现具有重复性的批量流程的高精度跟踪,因为其优异的学习能力和闭环稳定性。然而,作为基于模型的策略,ILMPC遭受了许多复杂非线性批处理系统中准确的第一主模型的不可用。由于丰富的过程数据,可以通过神经网络(NN)的试验确切地识别批处理系统的非线性动态,使其能够设计为设计数据驱动的ILMPC。在本文中,通过使用控制仿射馈通神经网络(CAFNN),提取前批次的过程数据中的特征以在当前批次中形成用于控制器设计的非线性仿射模型。基于CAFNN模型,ILMPC在管框架中配制,以衰减模型误差的影响并跟踪参考轨迹的持续准确性。由于控制仿射结构,客观函数的梯度可以分析离线计算,从而提高管ILMPC的在线计算效率和优化可行性。理论上分析了数据驱动ILMPC系统的鲁棒稳定性和收敛性。典型批量反应堆上的仿真验证了所提出的控制方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号