首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach
【24h】

Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach

机译:可到达的神经网络控制系统的集合估计:一种模拟引导方法

获取原文
获取原文并翻译 | 示例

摘要

The vulnerability of artificial intelligence (AI) and machine learning (ML) against adversarial disturbances and attacks significantly restricts their applicability in safety-critical systems including cyber-physical systems (CPS) equipped with neural network components at various stages of sensing and control. This article addresses the reachable set estimation and safety verification problems for dynamical systems embedded with neural network components serving as feedback controllers. The closed-loop system can be abstracted in the form of a continuous-time sampled-data system under the control of a neural network controller. First, a novel reachable set computation method in adaptation to simulations generated out of neural networks is developed. The reachability analysis of a class of feedforward neural networks called multilayer perceptrons (MLPs) with general activation functions is performed in the framework of interval arithmetic. Then, in combination with reachability methods developed for various dynamical system classes modeled by ordinary differential equations, a recursive algorithm is developed for over-approximating the reachable set of the closed-loop system. The safety verification for neural network control systems can be performed by examining the emptiness of the intersection between the over-approximation of reachable sets and unsafe sets. The effectiveness of the proposed approach has been validated with evaluations on a robotic arm model and an adaptive cruise control system.
机译:人工智能(AI)和机器学习(ML)对抗对抗性扰动和攻击的脆弱性显着限制了它们在安全关键系统中的适用性,包括在传感和控制的各个阶段配备有神经网络组件的网络物理系统(CPS)。本文讨论了嵌入用作反馈控制器的神经网络组件的动态系统可达的集合估计和安全验证问题。闭环系统可以以连续时间采样数据系统的形式抽象,在控制神经网络控制器的控制下。首先,开发了一种新的可迁移集合计算方法,其适应于神经网络产生的模拟。在间隔算术框架中执行具有一般激活函数的多层感知(MLP)的一类前馈神经网络的可达性分析。然后,结合用于由常微分方程建模的各种动态系统类开发的可达性方法,开发了一种用于过度近似于闭环系统的递归算法。通过检查可达装置的过度逼近和不安全集合之间的交叉点的空虚,可以执行神经网络控制系统的安全验证。所提出的方法的有效性已经验证了机器人臂模型和自适应巡航控制系统的评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号