机译:通过深层上下文时空网络的端到端视频显着性检测
Zhejiang Univ Coll Comp Sci Hangzhou 310027 Peoples R China|Nanjing Univ Informat Sci & Technol Sch Automat Nanjing 210044 Peoples R China;
Univ Sydney Sch Comp Sci Sydney NSW 2006 Australia;
Zhejiang Univ Coll Comp Sci Hangzhou 310027 Peoples R China;
Zhejiang Univ Coll Comp Sci Hangzhou 310027 Peoples R China;
Zhejiang Univ Coll Comp Sci Hangzhou 310027 Peoples R China;
Zhejiang Univ Coll Comp Sci Hangzhou 310027 Peoples R China;
Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China;
Zhengzhou Univ Sch Informat Engn Zhengzhou 450001 Peoples R China;
Saliency detection; Context modeling; Spatiotemporal phenomena; Deep learning; Video sequences; Semantics; Task analysis; End-to-end spatiotemporal context modeling; motion characteristics; spatial context; temporal consistency; video saliency detection;
机译:基于深度学习的特征混合框架,用于视频内部时空显着性检测
机译:Deep3DSaliency:基于3D卷积网络的深度立体视频显着性检测模型
机译:时空注意神经网络的视频显着目标检测
机译:绝缘时空视频质量预测和聚集的深神经网络
机译:视频中的在线动作检测深度神经网络
机译:基于深度卷积神经网络的水稻病虫害视频检测识别方法
机译:深度神经网络,用于端到端时空视频质量预测和聚集