首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >End-to-End Video Saliency Detection via a Deep Contextual Spatiotemporal Network
【24h】

End-to-End Video Saliency Detection via a Deep Contextual Spatiotemporal Network

机译:通过深层上下文时空网络的端到端视频显着性检测

获取原文
获取原文并翻译 | 示例

摘要

As an interesting and important problem in computer vision, learning-based video saliency detection aims to discover the visually interesting regions in a video sequence. Capturing the information within frame and between frame at different aspects (such as spatial contexts, motion information, temporal consistency across frames, and multiscale representation) is important for this task. A key issue is how to jointly model all these factors within a unified data-driven scheme in an end-to-end fashion. In this article, we propose an end-to-end spatiotemporal deep video saliency detection approach, which captures the information on spatial contexts and motion characteristics. Furthermore, it encodes the temporal consistency information across the consecutive frames by implementing a convolutional long short-term memory (Conv-LSTM) model. In addition, the multiscale saliency properties for each frame are adaptively integrated for final saliency prediction in a collaborative feature-pyramid way. Finally, the proposed deep learning approach unifies all the aforementioned parts into an end-to-end joint deep learning scheme. Experimental results demonstrate the effectiveness of our approach in comparison with the state-of-the-art approaches.
机译:作为计算机视觉中的一个有趣和重要的问题,基于学习的视频显着性检测旨在在视频序列中发现视觉上有趣的区域。捕获帧内的信息以及在不同方面的帧之间(例如空间上下文,运动信息,跨帧的时间一致性以及多尺度表示)对此任务非常重要。关键问题是如何以端到端的方式共同模拟统一数据驱动方案中的所有这些因素。在本文中,我们提出了一种端到端的时空深度视频显着性检测方法,其捕获了关于空间上下文和运动特性的信息。此外,它通过实现卷积的长短期存储器(CONC-LSTM)模型来对连续帧跨越连续帧的时间一致性信息。另外,每个帧的多尺度显着性特性在协同特征 - 金字塔方式中自适应地集成以用于最终显着性预测。最后,建议的深度学习方法将所有上述部分统一到端到端联合深度学习方案中。实验结果表明,与最先进的方法相比,我们的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号