首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Radial Graph Convolutional Network for Visual Question Generation
【24h】

Radial Graph Convolutional Network for Visual Question Generation

机译:用于视觉问题的径向图卷积网络

获取原文
获取原文并翻译 | 示例

摘要

In this article, we address the problem of visual question generation (VQG), a challenge in which a computer is required to generate meaningful questions about an image targeting a given answer. The existing approaches typically treat the VQG task as a reversed visual question answer (VQA) task, requiring the exhaustive match among all the image regions and the given answer. To reduce the complexity, we propose an innovative answer-centric approach termed radial graph convolutional network (Radial-GCN) to focus on the relevant image regions only. Our Radial-GCN method can quickly find the core answer area in an image by matching the latent answer with the semantic labels learned from all image regions. Then, a novel sparse graph of the radial structure is naturally built to capture the associations between the core node (i.e., answer area) and peripheral nodes (i.e., other areas); the graphic attention is subsequently adopted to steer the convolutional propagation toward potentially more relevant nodes for final question generation. Extensive experiments on three benchmark data sets show the superiority of our approach compared with the reference methods. Even in the unexplored challenging zero-shot VQA task, the synthesized questions by our method remarkably boost the performance of several state-of-the-art VQA methods from 0% to over 40%. The implementation code of our proposed method and the successfully generated questions are available at https://github.com/Wangt-CN/VQG-GCN.
机译:在本文中,我们解决了视觉问题的问题(VQG),这是一个挑战,其中需要计算机生成有意义的关于定位给定答案的图像的有意义问题。现有方法通常将VQG任务视为反复的视觉问题答案(VQA)任务,要求所有图像区域和给定答案之间的详尽匹配。为了降低复杂性,我们提出了一种创新的答案中心方法,称为径向图卷积网络(径向-GCN),仅关注相关图像区域。我们的径向-GCN方法可以通过将潜在的答案与来自所有图像区域的语义标签匹配来快速找到图像中的核心答案区域。然后,自然地构建径向结构的新稀疏图以捕获核心节点(即,答案区域)和外围节点之间的关联(即,其他区域);随后采用图形注意力来转向卷积传播,以便对最终问题产生潜在的更多相关节点。与参考方法相比,三个基准数据集的广泛实验表明了我们的方法的优势。即使在未开发的挑战零点VQA任务中,我们的方法也会显着提高了几种最先进的VQA方法的性能,从0%到超过40%。我们提出的方法和成功生成的问题的实施守则可在https://github.com/wangt-cn/vqg-gcn中获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号