首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Synchronization for Quantized Semi-Markov Switching Neural Networks in a Finite Time
【24h】

Synchronization for Quantized Semi-Markov Switching Neural Networks in a Finite Time

机译:在有限时间内量化半马尔可夫切换神经网络的同步

获取原文
获取原文并翻译 | 示例

摘要

Finite-time synchronization (FTS) is discussed for delayed semi-Markov switching neural networks (S-MSNNs) with quantized measurement, in which a logarithmic quantizer is employed. The stochastic phenomena of structural and parametrical changes are modeled by a semi-Markov process whose transition rates are time-varying to depend on the sojourn time. Practical systems subject to unpredictable structural changes, such as quadruple-tank process systems, are described by delayed S-MSNNs. A key issue under the consideration is how to design a feedback controller to guarantee the FTS between the master system and the slave system. For this purpose, by using the weak infinitesimal operator, sufficient conditions are constructed to realize FTS of the resulting error system over a finite-time interval. Then, the solvability conditions for the desired finite-time controller can be determined under a linear matrix inequality framework. Finally, the theoretical findings are illustrated by the quadruple-tank process model.
机译:为具有量化测量的延迟半马尔可夫切换神经网络(S-MSNN)讨论了有限时间同步(FTS),其中采用了对数量子化器。结构和参数变化的随机现象是由半马尔可夫过程建模的,其过渡率是时变的,以取决于苏诊断时间。通过延迟的S-MSNN描述符合不可预测的结构变化的实用系统,例如四肢罐过程系统。考虑因素的关键问题是如何设计反馈控制器以保证主系统和从系统之间的FTS。为此目的,通过使用弱无限的操作员,构造充足的条件以在有限时间间隔内实现所产生的误差系统的FTS。然后,可以在线性矩阵不等式框架确定所需有限时间控制器的可解性条件。最后,通过四重罐过程模型说明了理论发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号