首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Toward Mining Capricious Data Streams: A Generative Approach
【24h】

Toward Mining Capricious Data Streams: A Generative Approach

机译:迈向挖掘反复无常的数据流:一种生成方法

获取原文
获取原文并翻译 | 示例

摘要

Learning with streaming data has received extensive attention during the past few years. Existing approaches assume that the feature space is fixed or changes by following explicit regularities, limiting their applicability in real-time applications. For example, in a smart healthcare platform, the feature space of the patient data varies when different medical service providers use nonidentical feature sets to describe the patients' symptoms. To fill the gap, we in this article propose a novel learning paradigm, namely, Generative Learning With Streaming Capricious (GLSC) data, which does not make any assumption on the feature space dynamics. In other words, GLSC handles the data streams with a varying feature space, where each arriving data instance can arbitrarily carry new features and/or stop carrying partial old features. Specifically, GLSC trains a learner on a universal feature space that establishes relationships between old and new features, so that the patterns learned in the old feature space can be used in the new feature space. The universal feature space is constructed by leveraging the relatednesses among features. We propose a generative graphical model to model the construction process, and show that learning from the universal feature space can effectively improve the performance with theoretical guarantees. The experimental results demonstrate that GLSC achieves conspicuous performance on both synthetic and real data sets.
机译:在过去几年中,通过流媒体数据学习已经受到广泛的关注。现有方法假设特征空间通过以下显式规则性来修复或更改,限制其在实时应用程序中的适用性。例如,在智能医疗服务平台中,当不同的医疗服务提供商使用非识别功能集来描述患者的症状时,患者数据的特征空间变化。为了填补差距,我们在本文中提出了一种新的学习范式,即生成的学习,具有流式倒数常用(GLSC)数据,这不会对特征空间动态作出任何假设。换句话说,GLSC处理具有不同特征空间的数据流,其中每个到达数据实例可以任意携带新的特征和/或停止携带部分旧功能。具体而言,GLSC在古怪的特征空间上培训学习者,该空间建立旧功能和新功能之间的关系,以便在新的特征空间中使用旧功能空间中学到的模式。通过利用特征之间的相关性来构建普遍的特征空间。我们提出了一种生成的图形模型来模拟施工过程,并表明来自普遍特征空间的学习可以有效地提高理论保证的性能。实验结果表明,GLSC在合成和真实数据集上实现了显着性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号