首页> 外文期刊>Knowledge-Based Systems >HDSM: A distributed data mining approach to classifying vertically distributed data streams
【24h】

HDSM: A distributed data mining approach to classifying vertically distributed data streams

机译:HDSM:一种分布式数据挖掘方法,用于对垂直分布的数据流进行分类

获取原文
获取原文并翻译 | 示例

摘要

The rise in the Internet of Things (IoT) and other sensor networks has created many vertically-distributed and high-velocity data streams that require specialized algorithms for true distributed data mining. This paper proposes a novel Hierarchical Distributed Stream Miner (HDSM) that learns relationships between the features of separate data streams with minimal data transmission to central locations. Experimental evaluation demonstrates significant improvements in classification accuracy over previously proposed distributed stream-mining approaches while minimizing data transmission and computational costs. HDSM's potential for dynamically trading off accuracy with computational resource costs is also demonstrated. (C) 2019 Elsevier B.V. All rights reserved.
机译:物联网(IoT)和其他传感器网络的兴起创建了许多垂直分布的高速数据流,这些数据流需要用于真正的分布式数据挖掘的专用算法。本文提出了一种新颖的分层分布式矿工(HDSM),该矿工可以以最少的数据传输到中心位置来学习独立数据流的特征之间的关系。实验评估表明,与以前提出的分布式流挖掘方法相比,分类精度显着提高,同时最大程度地减少了数据传输和计算成本。还展示了HDSM在动态平衡精度与计算资源成本之间的潜力。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号