首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >PoPPL: Pedestrian Trajectory Prediction by LSTM With Automatic Route Class Clustering
【24h】

PoPPL: Pedestrian Trajectory Prediction by LSTM With Automatic Route Class Clustering

机译:poppl:LSTM与自动路由类聚类的行人轨迹预测

获取原文
获取原文并翻译 | 示例

摘要

Pedestrian path prediction is a very challenging problem because scenes are often crowded or contain obstacles. Existing state-of-the-art long short-term memory (LSTM)-based prediction methods have been mainly focused on analyzing the influence of other people in the neighborhood of each pedestrian while neglecting the role of potential destinations in determining a walking path. In this article, we propose classifying pedestrian trajectories into a number of route classes (RCs) and using them to describe the pedestrian movement patterns. Based on the RCs obtained from trajectory clustering, our algorithm, which we name the prediction of pedestrian paths by LSTM (PoPPL), predicts the destination regions through a bidirectional LSTM classification network in the first stage and then generates trajectories corresponding to the predicted destination regions through one of the three proposed LSTM-based architectures in the second stage. Our algorithm also outputs probabilities of multiple predicted trajectories that head toward the destination regions. We have evaluated PoPPL against other state-of-the-art methods on two public data sets. The results show that our algorithm outperforms other methods and incorporating potential destination prediction improves the trajectory prediction accuracy.
机译:行人路径预测是一个非常具有挑战性的问题,因为场景往往拥挤或包含障碍物。现有的最先进的长短期记忆(LSTM)的预测方法主要集中在分析每个行人附近的其他人的影响,同时忽视潜在目的地在确定步行路径时的作用。在本文中,我们建议将行人轨迹分类为许多路线类(RCS)并使用它们来描述行人运动模式。基于从轨迹群集获得的RCS,我们将LSTM(POPPL)命名的步行路径预测的算法(Poppl),通过第一阶段中的双向LSTM分类网络预测目的地区域,然后生成与预测目的地区域对应的轨迹通过第二阶段三个基于LSTM的架构之一。我们的算法还输出朝向目标区域的多个预测轨迹的概率。我们在两个公共数据集上评估了其他最先进的方法的Poppl。结果表明,我们的算法优于其他方法,并结合潜在的目的地预测,提高了轨迹预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号