首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >An Exact Reformulation of Feature-Vector-Based Radial-Basis-Function Networks for Graph-Based Observations
【24h】

An Exact Reformulation of Feature-Vector-Based Radial-Basis-Function Networks for Graph-Based Observations

机译:基于特征矢量的径向基函数网络的精确重构,用于基于图形的观测

获取原文
获取原文并翻译 | 示例

摘要

Radial basis function (RBF) networks are traditionally defined for sets of vector-based observations. In this brief, we reformulate such networks so that they can be applied to adjacency-matrix representations of weighted, directed graphs that represent the relationships between object pairs. We restate the sum-of-squares objective function so that it is purely dependent on entries from the adjacency matrix. From this objective function, we derive a gradient descent update for the network weights. We also derive a gradient update that simulates the repositioning of the radial basis prototypes and changes in the radial basis prototype parameters. An important property of our radial basis function networks is that they are guaranteed to yield the same responses as conventional radial basis networks trained on a corresponding vector realization of the relationships encoded by the adjacency matrix. Such a vector realization only needs to provably exist for this property to hold, which occurs whenever the relationships correspond to distances from some arbitrary metric applied to a latent set of vectors. We, therefore, completely avoid needing to actually construct vectorial realizations via multidimensional scaling, which ensures that the underlying relationships are totally preserved.
机译:传统上为基于载体的观察组定义了径向基函数(RBF)网络。在此简介中,我们重构此类网络,使得它们可以应用于代表对象对之间的关​​系的加权的邻近定向图的邻接矩阵表示。我们重述方格的总和目标函数,使其纯粹依赖于邻接矩阵的条目。根据该目标函数,我们导出了网络权重的梯度下降更新。我们还导出了一个渐变更新,用于模拟径向基原型的重新定位和径向基原型参数的变化。我们的径向基函数网络的一个重要属性是,保证它们与培训的常规径向基网络相同的响应,其在接受邻接矩阵编码的相应载体的实现中训练。这种载体实现仅需要可被证明存在于这种属性以保持,这是每当关系时发生的,只要关系对应于从应用于潜在的向量集的一些任意度量的距离。因此,我们完全避免了需要通过多维缩放实际构建矢量实现,这确保了底层关系完全保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号