首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >State-Feedback Filtering for Delayed Discrete-Time Complex-Valued Neural Networks
【24h】

State-Feedback Filtering for Delayed Discrete-Time Complex-Valued Neural Networks

机译:延迟离散时间复合值神经网络的状态反馈过滤

获取原文
获取原文并翻译 | 示例

摘要

This article explores a new filtering problem for the class of delayed discrete-time complex-valued neural networks (CVNNs) via state-feedback control design. The novelty of this article comes from the consideration of the newly developed complex-valued reciprocal convex matrix inequality as well as the complex-valued Jensen-based summation inequalities (JSIs). By employing an appropriate Lyapunov-Krasovskii functional (LKF) and by using newly proposed complex-valued inequalities, attention is concentrated on the design of a state-feedback filter such that the associated filtering error system is asymptotically stable with prescribed filter and control gain matrices. The proposed theoretical results are presented in terms of complex-valued linear matrix inequalities (LMIs) that can be solved numerically by using the YALMIP toolbox in MATLAB software. Additionally, one numerical example is given to confirm the validity of the resulting sufficient conditions with the availability of the suitable control and filter design.
机译:本文通过状态反馈控制设计探讨了延迟离散时间复值神经网络(CVNNS)类的新过滤问题。本文的新颖性来自对新开发的复合值互惠凸矩阵不等式以及基于复合的Jensen的求和不等式(JSIS)的思考。通过采用适当的Lyapunov-Krasovskii功能(LKF)并通过使用新提出的复合值不等式,专注于状态反馈滤波器的设计,使得相关的滤波误差系统具有规定的滤波器和控制增益矩阵渐近稳定。所提出的理论结果是通过在MATLAB软件中使用Yalmip工具箱来数字解决的复值的线性矩阵不等式(LMI)而呈现。另外,给出一个数值示例以确认所产生的足够条件的有效性,通过合适的控制和滤波器设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号