首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction
【24h】

Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction

机译:基于门控复发单元的深度学习方法和短期风电间隔预测的变分模式分解

获取原文
获取原文并翻译 | 示例

摘要

Wind power interval prediction (WPIP) plays an increasingly important role in evaluations of the uncertainty of wind power and becomes necessary for managing and planning power systems. However, the intermittent and fluctuating characteristics of wind power mean that high-quality prediction intervals (PIs) production is a challenging problem. In this article, we propose a novel hybrid model for the WPIP based on the gated recurrent unit (GRU) neural networks and variational mode decomposition (VMD). In the hybrid model, VMD is employed to decompose complex wind power data into simplified modes. Basic GRU prediction models, comprising a GRU input layer, multiple fully connected layers, and a rank-ordered terminal layer, are then trained for each mode to produce PIs, which are combined to obtain final PIs. In addition, an adaptive optimization method based on constructed intervals (CIs) is proposed to build high-quality training labels for supervised learning with the hybrid model. Several numerical experiments were implemented to validate the effectiveness of the proposed method. The results indicate that the proposed method performs better than the traditional interval prediction models with much higher quality PIs, and it requires less training time.
机译:风电间隔预测(WPIP)在风电不确定性的评估中起着越来越重要的作用,并且对于管理和规划电力系统而成为必要的作用。然而,风能的间歇和波动特性意味着高质量的预测间隔(PIS)生产是一个具有挑战性的问题。在本文中,我们提出了一种基于门控复发单元(GRU)神经网络和变分模式分解(VMD)的WPIP的新型混合模型。在混合模型中,VMD用于将复杂的风电数据分解成简化模式。然后,对包括GRU输入层,多个完全连接的层和秩序的终端层的基本GRU预测模型被训练以产生PIS,其组合以获得最终PI。此外,提出了一种基于构造间隔(CIS)的自适应优化方法,以便为使用混合模型进行监督学习的高质量训练标签。实施了几个数值实验以验证所提出的方法的有效性。结果表明,该方法比具有更高质量PIS的传统间隔预测模型更好地执行,并且需要更少的培训时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号