首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Sparse Supervised Representation-Based Classifier for Uncontrolled and Imbalanced Classification
【24h】

Sparse Supervised Representation-Based Classifier for Uncontrolled and Imbalanced Classification

机译:基于稀疏的监督表示的基于分类,用于不受控制和不平衡分类

获取原文
获取原文并翻译 | 示例

摘要

The sparse representation-based classification (SRC) has been utilized in many applications and is an effective algorithm in machine learning. However, the performance of SRC highly depends on the data distribution. Some existing works proved that SRC could not obtain satisfactory results on uncontrolled data sets. Except the uncontrolled data sets, SRC cannot deal with imbalanced classification either. In this paper, we proposed a model named sparse supervised representation classifier (SSRC) to solve the above-mentioned issues. The SSRC involves the class label information during the test sample representation phase to deal with the uncontrolled data sets. In SSRC, each class has the opportunity to linearly represent the test sample in its subspace, which can decrease the influences of the uncontrolled data distribution. In order to classify imbalanced data sets, a class weight learning model is proposed and added to SSRC. Each class weight is learned from its corresponding training samples. The experimental results based on the AR face database (uncontrolled) and 15 KEEL data sets (imbalanced) with an imbalanced rate ranging from 1.48 to 61.18 prove SSRC can effectively classify uncontrolled and imbalanced data sets.
机译:基于稀疏表示的分类(SRC)已在许多应用中使用,并且是机器学习中的有效算法。但是,SRC的性能高度取决于数据分布。有些现有的作品证明,SRC无法在不受控制的数据集中获得满意的结果。除非不受控制的数据集外,SRC也无法处理不平衡的分类。在本文中,我们提出了一个名为稀疏监管表示分类器(SSRC)的模型来解决上述问题。 SSRC涉及在测试样本表示阶段期间的类标签信息,以处理不受控制的数据集。在SSRC中,每个类都有机会在其子空间中线性地代表测试样本,这可以降低不受控制的数据分布的影响。为了分类不平衡数据集,提出了一个类重量学习模型并将其添加到SSRC。每个类重量都是从其相应的训练样本中学到的。基于AR面部数据库(不受控制)和15个龙骨数据集(不平衡)的实验结果,其具有从1.48至61.18的不平衡速率的不平衡速率证明了SSRC可以有效地分类了不受控制和不平衡的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号