首页> 外文期刊>Expert Systems with Application >Sparse coding based classifier ensembles in supervised and active learning scenarios for data classification
【24h】

Sparse coding based classifier ensembles in supervised and active learning scenarios for data classification

机译:在数据学习的监督和主动学习场景中,基于稀疏编码的分类器集合

获取原文
获取原文并翻译 | 示例

摘要

Sparse coding and dictionary learning has recently gained great interest in signal, image and audio processing applications through representing each problem instance by a sparse set of atoms. This also allows us to obtain different representations of feature sets in machine learning problems. Thus, different feature views for classifier ensembles can be obtained using sparse coding. On the other hand, nowadays unlabelled data is abundant and active learning methods with single and classifier ensembles received great interest. In this study, Random Subspace Dictionary Learning (RDL) and Bagging Dictionary Learning (BDL) algorithms are examined by learning ensembles of dictionaries through feature instance subspaces. Besides, ensembles of dictionaries are evaluated under active learning framework as promising models and they are named as Active Random Subspace Dictionary Learning (ARDL) and Active Bagging Dictionary Learning (ABDL) algorithms. Active learning methods are compared with their Support Vector Machines counterparts. The experiments on eleven datasets from UCI and OpenML repositories has shown that selecting instance and feature subspaces for dictionary learning model increases the number of correctly classified instances for the most of the data sets while SVM has superiority over all of the applied models. Furthermore, using an active learner generally increases the chance of improved classification performance as the number of iterations is increased. (C) 2017 Elsevier Ltd. All rights reserved.
机译:通过用稀疏原子集表示每个问题实例,稀疏编码和字典学习最近在信号,图像和音频处理应用中引起了极大兴趣。这也使我们可以获得机器学习问题中特征集的不同表示。因此,可以使用稀疏编码获得用于分类器集合的不同特征视图。另一方面,如今,未标记的数据非常丰富,具有单个和分类器集合的主动学习方法引起了人们的极大兴趣。在这项研究中,通过通过特征实例子空间学习字典的集合,研究了随机子空间字典学习(RDL)和袋装字典学习(BDL)算法。此外,在主动学习框架下,将字典的合集作为有希望的模型进行评估,它们被称为主动随机子空间字典学习(ARDL)和主动袋装字典学习(ABDL)算法。将主动学习方法与其对应的支持向量机进行比较。对来自UCI和OpenML存储库的11个数据集进行的实验表明,为字典学习模型选择实例和特征子空间可以为大多数数据集增加正确分类的实例的数量,而SVM优于所有应用模型。此外,随着迭代次数的增加,使用主动学习器通常会增加改进分类性能的机会。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号