首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >RecSys-DAN: Discriminative Adversarial Networks for Cross-Domain Recommender Systems
【24h】

RecSys-DAN: Discriminative Adversarial Networks for Cross-Domain Recommender Systems

机译:RECSYS-DAN:用于跨域推荐系统的鉴别性对抗网络

获取原文
获取原文并翻译 | 示例

摘要

Data sparsity and data imbalance are practical and challenging issues in cross-domain recommender systems (RSs). This paper addresses those problems by leveraging the concepts which derive from representation learning, adversarial learning, and transfer learning (particularly, domain adaptation). Although various transfer learning methods have shown promising performance in this context, our proposed novel method RecSys-DAN focuses on alleviating the cross-domain and within-domain data sparsity and data imbalance and learns transferable latent representations for users, items, and their interactions. Different from the existing approaches, the proposed method transfers the latent representations from a source domain to a target domain in an adversarial way. The mapping functions in the target domain are learned by playing a min-max game with an adversarial loss, aiming to generate domain indistinguishable representations for a discriminator. Four neural architectural instances of ResSys-DAN are proposed and explored. Empirical results on real-world Amazon data show that, even without using labeled data (i.e., ratings) in the target domain, RecSys-DAN achieves competitive performance as compared to the state-of-the-art supervised methods. More importantly, RecSys-DAN is highly flexible to both unimodal and multimodal scenarios, and thus it is more robust to the cold-start recommendation which is difficult for the previous methods.
机译:数据稀疏性和数据不平衡是跨域推荐系统(RSS)中的实用和具有挑战性的问题。本文通过利用来自代表学习,对抗学习和转移学习(特别是域适应)的概念来解决这些问题。尽管各种转移学习方法在这种情况下显示了有希望的性能,但我们提出的新型方法RECSYS-DAN侧重于减轻跨域和域内数据稀疏性和数据不平衡,并为用户,项目及其交互学习可转让的潜在表示。与现有方法不同,所提出的方法以普发的方式将从源域的潜在表示传递到目标域。通过播放具有对冲丢失的最小最大游戏来了解目标域中的映射函数,旨在为鉴别者生成域无法区分的表示。建议和探索了ressys-dan的四个神经结构实例。实验结果对现实世界亚马逊数据显示,即使在目标领域中没有使用标签数据(即,评级),Recsys-Dan与最先进的监督方法相比,恢复率达到竞争性能。更重要的是,RECSYS-DAN对单峰和多模式场景非常灵活,因此对对先前方法难以的冷启动推荐更加强大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号