首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Secure Communication Based on Quantized Synchronization of Chaotic Neural Networks Under an Event-Triggered Strategy
【24h】

Secure Communication Based on Quantized Synchronization of Chaotic Neural Networks Under an Event-Triggered Strategy

机译:基于事件触发策略下混沌神经网络量化同步的安全通信

获取原文
获取原文并翻译 | 示例

摘要

This article presents a secure communication scheme based on the quantized synchronization of master-slave neural networks under an event-triggered strategy. First, a dynamic event-triggered strategy is proposed based on a quantized output feedback, for which a quantized output feedback controller is formed. Second, theoretical criteria are derived to ensure the bounded synchronization of master-slave neural networks. With these criteria, an explicit upper bound is given for the synchronization error. Sufficient conditions are also provided on the existence of quantized output feedback controllers. A Chua's circuit is chosen to illustrate the effectiveness of our theoretical results. Third, a secure communication scheme is presented based on the synchronization of master-slave neural networks by combining the basic principle of cryptology. Then, a secure image communication is studied to verify the feasibility and security performance of the proposed secure communication scheme. The impact of the quantization level and the event-triggered control (ETC) on image decryption is investigated through experiments.
机译:本文介绍了基于事件触发策略下主从神经网络量化同步的安全通信方案。首先,基于量化输出反馈提出了一种动态事件触发策略,其形成量化输出反馈控制器。其次,导出理论标准以确保主从神经网络的有界同步。利用这些标准,给出了同步误差的显式上限。在存在量化输出反馈控制器的存在下还提供了足够的条件。选择CHUA的电路以说明我们理论结果的有效性。第三,通过组合密码学的基本原理,基于主从神经网络的同步来呈现安全通信方案。然后,研究了安全图像通信以验证所提出的安全通信方案的可行性和安全性能。通过实验研究了量化水平和事件触发控制(ETC)对图像解密的影响。

著录项

  • 来源
  • 作者单位

    East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China|Tongji Univ Shanghai Inst Intelligent Sci & Technol Shanghai 200092 Peoples R China;

    East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China|Tongji Univ Shanghai Inst Intelligent Sci & Technol Shanghai 200092 Peoples R China;

    East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China|Tongji Univ Shanghai Inst Intelligent Sci & Technol Shanghai 200092 Peoples R China;

    East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China|Tongji Univ Shanghai Inst Intelligent Sci & Technol Shanghai 200092 Peoples R China;

    Queensland Univ Technol Sch Comp Sci Brisbane Qld 4001 Australia;

    East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China|Tongji Univ Shanghai Inst Intelligent Sci & Technol Shanghai 200092 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Synchronization; Chaotic communication; Quantization (signal); Output feedback; Biological neural networks; Security; Chaotic neural networks; event-triggered strategy; quantized synchronization; secure communication;

    机译:同步;混沌通信;量化(信号);输出反馈;生物神经网络;安全;混沌神经网络;事件触发策略;量化同步;安全通信;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号