首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Learning Markov Blankets From Multiple Interventional Data Sets
【24h】

Learning Markov Blankets From Multiple Interventional Data Sets

机译:从多个介入数据集学习马尔可夫毯子

获取原文
获取原文并翻译 | 示例

摘要

Learning Markov blankets (MBs) plays an important role in many machine learning tasks, such as causal Bayesian network structure learning, feature selection, and domain adaptation. Since variables included in the MB of a target variable of interest have causal relationships with the target, the MB can serve as the basis of learning the global structure of a causal Bayesian network or as a reliable and robust feature set for classification, both within the same domain or across domains. In this article, we study the problem of learning the MB of a target variable from multiple interventional data sets. Data sets attained from interventional experiments contain richer causal information than passively observed data (observational data) for MB discovery. However, almost all existing MB discovery methods are designed for learning MBs from a single observational data set. To learn MBs from multiple interventional data sets, we face two challenges: 1) unknown intervention variables and 2) nonidentical data distributions. To address these challenges, we theoretically analyze: 1) under what conditions we can find the correct MB of a target variable and 2) under what conditions we can identify the causes of the target variable via discovering its MB. Based on the theoretical analysis, we propose a new algorithm for learning MBs from multiple interventional data sets, and we present the conditions/assumptions that assure the correctness of the algorithm. To the best of our knowledge, this article is the first to present the theoretical analyses about the conditions for MB discovery in multiple interventional data sets and the algorithm to find the MBs in relation to the conditions. Using benchmark Bayesian networks and real-world data sets, the experiments have validated the effectiveness and efficiency of the proposed algorithm in this article.
机译:学习马尔可夫毯子(MBS)在许多机器学习任务中起着重要作用,例如因果贝叶斯网络结构学习,特征选择和域改编。由于感兴趣的目标变量的MB中包括的变量具有与目标的因果关系,因此MB可以作为学习因果贝叶斯网络的全局结构或作为分类的可靠和强大功能设置的基础,这无助于相同的域或跨域。在本文中,我们研究了从多个介入数据集学习目标变量的MB的问题。从介入实验中获得的数据集包含比被动地观察MB发现的数据(观察数据)的更丰富的因果关系。然而,几乎所有现有的MB发现方法都是为从单个观察数据集学习MB的。要从多个介入数据集中学习MB,我们面临两个挑战:1)未知的干预变量和2)非识别数据分布。为了解决这些挑战,我们理论上分析:1)在什么条件下我们可以在什么条件下找到目标变量的正确MB,2)我们可以通过发现其MB来识别目标变量的原因。基于理论分析,我们提出了一种从多个介入数据集学习MB的新算法,我们介绍了确保算法正确性的条件/假设。据我们所知,本文是第一个在多个介入数据集中和算法中找到关于MB发现条件的理论分析,以找到与条件相关的MB。使用基准贝叶斯网络和现实世界数据集,实验已经验证了本文所提出的算法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号