首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Energy Disaggregation via Deep Temporal Dictionary Learning
【24h】

Energy Disaggregation via Deep Temporal Dictionary Learning

机译:通过深度时间字典学习的能量分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel nonlinear dictionary learning (DL) model to address the energy disaggregation (ED) problem, i.e., decomposing the electricity signal of a home to its operating devices. First, ED is modeled as a new temporal DL problem where a set of dictionary atoms is learned to capture the most representative temporal features of electricity signals. The sparse codes corresponding to these atoms show the contribution of each device in the total electricity consumption. To learn powerful atoms, a novel deep temporal DL (DTDL) model is proposed that computes complex nonlinear dictionaries in the latent space of a long short-term memory autoencoder (LSTM-AE). While the LSTM-AE captures the deep temporal manifold of electricity signals, the DTDL model finds the most representative atoms inside this manifold. To simultaneously optimize the dictionary and the deep temporal manifold, a new optimization algorithm is proposed that alternates between finding the optimal LSTM-AE and the optimal dictionary. To the best of authors' knowledge, DTDL is the only DL model that understands the deep temporal structures of the data. Experiments on the Reference ED Data Set show an outstanding performance compared with the recent state-of-the-art algorithms in terms of precision, recall, accuracy, and F-score.
机译:本文提出了一种新的非线性字典学习(DL)模型,用于解决能量分类(ED)问题,即将所属的电力信号分解到其操作设备。首先,ED被建模为新的时间DL问题,其中学习一组字典原子以捕获电力信号的最代表性的时间特征。对应于这些原子的稀疏代码显示了每个器件在总电消耗中的贡献。为了学习强大的原子,提出了一种新的深度时间DL(DTDL)模型,从而计算长短期内存自动化器(LSTM-AE)的潜在空间中的复杂非线性词典。虽然LSTM-AE捕获了电力信号的深颞歧管,但DTDL模型在此歧管内找到最多代表性的原子。为了同时优化字典和深度时间歧管,提出了一种新的优化算法,其在找到最佳LSTM-AE和最佳词典之间交替。据作者所知,DTDL是唯一了解数据的深度时间结构的唯一DL模型。与最近的最近的最新算法相比,参考ED数据集的实验显示了精确,召回,准确性和F分数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号