首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Neural Network-Based Information Transfer for Dynamic Optimization
【24h】

Neural Network-Based Information Transfer for Dynamic Optimization

机译:基于神经网络的动态优化信息传输

获取原文
获取原文并翻译 | 示例

摘要

In dynamic optimization problems (DOPs), as the environment changes through time, the optima also dynamically change. How to adapt to the dynamic environment and quickly find the optima in all environments is a challenging issue in solving DOPs. Usually, a new environment is strongly relevant to its previous environment. If we know how it changes from the previous environment to the new one, then we can transfer the information of the previous environment, e.g., past solutions, to get new promising information of the new environment, e.g., new high-quality solutions. Thus, in this paper, we propose a neural network (NN)-based information transfer method, named NNIT, to learn the transfer model of environment changes by NN and then use the learned model to reuse the past solutions. When the environment changes, NNIT first collects the solutions from both the previous environment and the new environment and then uses an NN to learn the transfer model from these solutions. After that, the NN is used to transfer the past solutions to new promising solutions for assisting the optimization in the new environment. The proposed NNIT can be incorporated into population-based evolutionary algorithms (EAs) to solve DOPs. Several typical state-of-the-art EAs for DOPs are selected for comprehensive study and evaluated using the widely used moving peaks benchmark. The experimental results show that the proposed NNIT is promising and can accelerate algorithm convergence.
机译:在动态优化问题(DOPS)中,随着环境通过时间变化,OPTAM也会动态地改变。如何适应动态环境,并在所有环境中快速找到最佳优化是一个具有挑战性的问题在解决困境中。通常,新环境与之前的环境非常相关。如果我们知道如何从以前的环境变为新的环境,那么我们可以转移以前的环境的信息,例如过去的解决方案,以获得新环境的新有希望的信息,例如新的高质量解决方案。因此,在本文中,我们提出了一种名为Nnit的基于神经网络(NN)的信息传输方法,以了解NN的环境变化的传输模型,然后使用学习模型来重用过去的解决方案。当环境发生变化时,NNIT首先从以前的环境和新环境中收集解决方案,然后使用NN从这些解决方案中学习传输模型。之后,NN用于将过去的解决方案转移到新的有希望的解决方案,以协助新环境中的优化。所提出的NNIT可以纳入基于人群的进化算法(EAS)以解决多孔。为DOPS进行几种典型的最先进的EA用于综合研究,并使用广泛使用的移动峰基准进行评估。实验结果表明,所提出的NNIT是有前途的,可以加速算法融合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号