首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Decentralized Neural Network Tracking Control for Uncertain Interconnected Nonlinear Systems With Input Quantization and Time Delay
【24h】

Adaptive Decentralized Neural Network Tracking Control for Uncertain Interconnected Nonlinear Systems With Input Quantization and Time Delay

机译:用于输入量化和时间延迟的不确定互连非线性系统的自适应分散的神经网络跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the problem of adaptive decentralized tracking control for a class of interconnected nonlinear systems with input quantization, unknown function, and time-delay, where the time-delay and interconnection terms are supposed to be bounded by some completely unknown functions. An adaptive decentralized tracking controller is constructed via the backstepping method and neural network technique, where a sliding-mode differentiator is presented to estimate the derivative of the virtual control law and reduce the complexity of the control scheme. On the basis of Lyapunov analysis scheme and graph theory, all the signals of the closed-loop system are uniformly ultimately bounded. Finally, an application example of an inverted pendulum system is given to demonstrate the effectiveness of the developed methods.
机译:本研究调查了一种具有输入量化,未知功能和延时的一类互连的非线性系统的自适应分散跟踪控制的问题,其中时间延迟和互连术语应该由一些完全未知的功能界定。通过反向方法和神经网络技术构造自适应分散式跟踪控制器,其中提出了滑模鉴别器来估计虚拟控制定律的导数并降低控制方案的复杂性。在Lyapunov分析方案和图论的基础上,闭环系统的所有信号都是均匀的最终界限。最后,给出了倒置摆系统的应用实例来证明所开发方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号