首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Face Sketch Synthesis by Multidomain Adversarial Learning
【24h】

Face Sketch Synthesis by Multidomain Adversarial Learning

机译:多麦田对抗性学习面临剪影综合

获取原文
获取原文并翻译 | 示例

摘要

Given a training set of face photo-sketch pairs, face sketch synthesis targets at learning a mapping from the photo domain to the sketch domain. Despite the exciting progresses made in the literature, it retains as an open problem to synthesize high-quality sketches against blurs and deformations. Recent advances in generative adversarial training provide a new insight into face sketch synthesis, from which perspective the existing synthesis pipelines can be fundamentally revisited. In this paper, we present a novel face sketch synthesis method by multidomain adversarial learning (termed MDAL), which overcomes the defects of blurs and deformations toward high-quality synthesis. The principle of our scheme relies on the concept of "interpretation through synthesis." In particular, we first interpret face photographs in the photodomain and face sketches in the sketch domain by reconstructing themselves respectively via adversarial learning. We define the intermediate products in the reconstruction process as latent variables, which form a latent domain. Second, via adversarial learning, we make the distributions of latent variables being indistinguishable between the reconstruction process of the face photograph and that of the face sketch. Finally, given an input face photograph, the latent variable obtained by reconstructing this face photograph is applied for synthesizing the corresponding sketch. Quantitative comparisons to the state-of-the-art methods demonstrate the superiority of the proposed MDAL method.
机译:给定训练脸部照片素描对,面部素描综合目标在学习从照片域到草图域的映射。尽管在文献中取得了令人兴奋的进展,但它保留了作为综合对冲和变形的高质量草图的开放问题。生成对抗性培训的最新进展提供了对面部素描合成的新洞察,从该角度来看,现有的合成管道可以从根本上重新审视。在本文中,我们通过多麦田对抗性学习(称为MDAL)提出了一种新的面部草图合成方法,其克服了对高质量合成的模糊和变形的缺陷。我们计划的原则依赖于“通过综合解释”的概念。特别是,我们首先通过对抗性学习重建本身来解释在光电域和面部草图中的面部照片。我们将重建过程中的中间产品定义为潜在变量,形成潜在域。其次,通过对抗性学习,我们使潜在变量的分布在面部照片的重建过程和面部草图的重建过程之间无法区分。最后,给定输入面部照片,施加通过重建该面照片而获得的潜变量用于合成相应的草图。最先进的方法的定量比较证明了所提出的MDAL方法的优越性。

著录项

  • 来源
  • 作者单位

    Xiamen Univ Fujian Key Lab Sensing & Comp Smart City Sch Informat Sci & Engn Xiamen 361005 Peoples R China;

    Xiamen Univ Fujian Key Lab Sensing & Comp Smart City Sch Informat Sci & Engn Xiamen 361005 Peoples R China;

    Xiamen Univ Fujian Key Lab Sensing & Comp Smart City Sch Informat Sci & Engn Xiamen 361005 Peoples R China;

    Chinese Acad Sci Xian Inst Opt & Precis Mech Xian 710119 Shaanxi Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China|Northwestern Polytech Univ Ctr OPT IMagery Anal & Learning OPTIMAL Xian 710072 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Adversarial learning; face sketch synthesis; generative model; latent variable;

    机译:对抗学习;面对素描合成;生成模型;潜在变量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号