首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Face Sketch Synthesis by Multidomain Adversarial Learning
【24h】

Face Sketch Synthesis by Multidomain Adversarial Learning

机译:基于多域对抗学习的人脸素描合成

获取原文
获取原文并翻译 | 示例

摘要

Given a training set of face photo-sketch pairs, face sketch synthesis targets at learning a mapping from the photo domain to the sketch domain. Despite the exciting progresses made in the literature, it retains as an open problem to synthesize high-quality sketches against blurs and deformations. Recent advances in generative adversarial training provide a new insight into face sketch synthesis, from which perspective the existing synthesis pipelines can be fundamentally revisited. In this paper, we present a novel face sketch synthesis method by multidomain adversarial learning (termed MDAL), which overcomes the defects of blurs and deformations toward high-quality synthesis. The principle of our scheme relies on the concept of "interpretation through synthesis." In particular, we first interpret face photographs in the photodomain and face sketches in the sketch domain by reconstructing themselves respectively via adversarial learning. We define the intermediate products in the reconstruction process as latent variables, which form a latent domain. Second, via adversarial learning, we make the distributions of latent variables being indistinguishable between the reconstruction process of the face photograph and that of the face sketch. Finally, given an input face photograph, the latent variable obtained by reconstructing this face photograph is applied for synthesizing the corresponding sketch. Quantitative comparisons to the state-of-the-art methods demonstrate the superiority of the proposed MDAL method.
机译:给定一组训练的面部照片素描对,面部草图合成的目标是学习从照片域到草图域的映射。尽管在文献中取得了令人激动的进步,但仍然存在着一个开放的问题,即合成高质量的草图以防止模糊和变形。生成对抗训练的最新进展为人脸素描合成提供了新的见解,从这个角度可以对现有的合成管道进行根本性的重新研究。在本文中,我们提出了一种通过多域对抗性学习(称为MDAL)的新颖人脸草图合成方法,该方法克服了模糊和变形的缺陷,无法实现高质量的合成。我们的方案的原理依赖于“通过合成进行解释”的概念。特别地,我们首先通过对抗性学习分别重构自身,以解释光域中的面部照片和草图域中的面部草图。我们将重构过程中的中间产品定义为潜在变量,它们构成一个潜在域。其次,通过对抗学习,我们使人脸照片的重构过程与人脸素描的重构过程之间的潜在变量分布难以区分。最后,给定输入的面部照片,将通过重构该面部照片获得的潜变量用于合成相应的草图。与现有技术方法的定量比较证明了所提出的MDAL方法的优越性。

著录项

  • 来源
  • 作者单位

    Xiamen Univ, Fujian Key Lab Sensing & Comp Smart City, Sch Informat Sci & Engn, Xiamen 361005, Peoples R China;

    Xiamen Univ, Fujian Key Lab Sensing & Comp Smart City, Sch Informat Sci & Engn, Xiamen 361005, Peoples R China;

    Xiamen Univ, Fujian Key Lab Sensing & Comp Smart City, Sch Informat Sci & Engn, Xiamen 361005, Peoples R China;

    Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China|Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Adversarial learning; face sketch synthesis; generative model; latent variable;

    机译:对抗学习;面对素描合成;生成模型;潜在变量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号