首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Flow Adversarial Networks: Flowrate Prediction for Gas–Liquid Multiphase Flows Across Different Domains
【24h】

Flow Adversarial Networks: Flowrate Prediction for Gas–Liquid Multiphase Flows Across Different Domains

机译:流量对抗网络:跨不同域的气液多相流的流量预测

获取原文
获取原文并翻译 | 示例

摘要

The solution of how to accurately and timely predict the flowrate of gas-liquid mixtures is the key to help petroleum and other related industries to reduce costs, improve efficiency, and optimize management. Although numerous studies have been carried out over the past decades, the problem is still significantly challenging due to the complexity of multiphase flows. This paper attempts to seek new possibilities for multiphase flow measurement and novel application scenarios for state-of-the-art machine learning (ML) techniques. Convolutional neural networks (CNNs) are applied to predict the flowrate of multiphase flows for the first time and can achieve promising performance. In addition, considering the difference between data distributions of training and testing samples and its negative impact on prediction accuracy of the CNN models on testing samples, we propose flow adversarial networks (FANs) that can distill both domain-invariant and flowrate-discriminative features from the raw input. The method is evaluated on dynamic experimental data of different multiphase flows on different flow conditions and operating environments. The experimental results demonstrate that FANs can effectively prevent the accuracy degradation caused by the gap between training and testing samples and have better performance than state-of-the-art approaches in the flowrate prediction field.
机译:解决如何准确,及时地预测气液混合物流量的方法,是帮助石油及其他相关行业降低成本,提高效率和优化管理的关键。尽管在过去的几十年中进行了许多研究,但是由于多相流的复杂性,该问题仍然具有很大的挑战性。本文试图为多相流测量寻求新的可能性,并为最新的机器学习(ML)技术寻求新颖的应用场景。卷积神经网络(CNN)首次用于预测多相流的流量,并可以实现有希望的性能。此外,考虑到训练样本和测试样本的数据分布之间的差异及其对CNN模型对测试样本的预测准确性的负面影响,我们提出了流量对抗网络(FANs),可以从中提取领域不变特征和流量区分特征原始输入。该方法是基于在不同流动条件和操作环境下不同多相流动的动态实验数据进行评估的。实验结果表明,与流量预测领域的最新技术相比,FANs可以有效地防止由于训练和测试样本之间的间隙而导致的精度下降,并且具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号