首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Deep Collaborative Framework for Face Photo–Sketch Synthesis
【24h】

A Deep Collaborative Framework for Face Photo–Sketch Synthesis

机译:人脸照片素描合成的深层协作框架

获取原文
获取原文并翻译 | 示例

摘要

Great breakthroughs have been made in the accuracy and speed of face photo-sketch synthesis in recent years. Regression-based methods have gained increasing attention, which benefit from deeper and faster end-to-end convolutional neural networks. However, most of these models typically formulate the mapping from photo domain X to sketch domain Y as a unidirectional feedforward mapping, G : X -> Y, and vice versa, F : Y -> X; thus, the utilization of mutual interaction between two opposite mappings is lacking. Therefore, we proposed a collaborative framework for face photo-sketch synthesis. The concept behind our model was that a middle latent domain (Z) over tilde between the photo domain X and the sketch domain Y can be learned during the learning procedure of G : X -> Y and F : Y -> X by introducing a collaborative lass that makes full use of two opposite mappings. This strategy can constrain the two opposite mappings and make them more symmetrical, thus making the network more suitable for the photo-sketch synthesis task and obtaining higher quality generated images. Qualitative and quantitative experiments demonstrated the superior performance of our model in comparison with the existing state-of-the-art solutions.
机译:近年来,人脸照片素描合成的准确性和速度取得了重大突破。基于回归的方法越来越受到关注,这得益于更深入,更快速的端到端卷积神经网络。但是,大多数这些模型通常将从照片域X到草图域Y的映射公式化为单向前馈映射G:X-> Y,反之亦然,F:Y-> X;因此,缺少利用两个相对映射之间的交互作用。因此,我们提出了一种用于人脸照片素描合成的协作框架。我们模型背后的概念是,在G:X-> Y和F:Y-> X的学习过程中,可以通过引入a来学习照片域X和草图域Y之间的波浪线上的中间潜域(Z)。充分利用了两个相反的映射的协作激光。这种策略可以约束两个相对的映射并使它们更加对称,从而使网络更适合于照片素描合成任务并获得更高质量的生成图像。定性和定量实验证明,与现有的最新解决方案相比,我们的模型具有优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号