首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Integrated Sliding Mode Control and Neural Networks Based Packet Disordering Prediction for Nonlinear Networked Control Systems
【24h】

Integrated Sliding Mode Control and Neural Networks Based Packet Disordering Prediction for Nonlinear Networked Control Systems

机译:非线性网络控制系统中基于集成滑模控制和神经网络的分组失序预测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new scheme based on neural networks for predicting the packet disordering and sliding mode control (SMC) to stabilize the nonlinear networked control systems (NCSs). It is assumed that the packet disordering is unknown in the NCSs. The stochastic configuration networks (SCNs), which randomly assign the input weights and biases and analytically evaluate the output weights, are designed to solve the problem of unknown packet disordering. A new SMC scheme is developed by integrating the SCNs algorithm to learn and control the system in advance. Specifically, a novel measurement of packet disordering is constructed for the quantization of the packet disordering. In addition, the newest signal principle leads to the existence of stochastic parameters, thereby resulting in a Markovian jumping system. The effectiveness of the proposed approach is verified by some simulation results.
机译:在本文中,我们提出了一种基于神经网络的新方案,用于预测数据包无序和滑模控制(SMC),以稳定非线性网络控制系统(NCS)。假定在NCS中分组混乱是未知的。随机配置网络(SCN)随机分配输入权重和偏差,并分析评估输出权重,旨在解决未知数据包混乱的问题。通过集成SCNs算法来开发新的SMC方案,以预先学习和控制系统。具体地,构造了分组无序性的新测量以量化分组无序性。另外,最新的信号原理导致随机参数的存在,从而导致了马尔可夫跳跃系统。仿真结果验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号