首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Temporal Attention-Augmented Bilinear Network for Financial Time-Series Data Analysis
【24h】

Temporal Attention-Augmented Bilinear Network for Financial Time-Series Data Analysis

机译:时间注意力增强双线性网络用于金融时间序列数据分析

获取原文
获取原文并翻译 | 示例

摘要

Financial time-series forecasting has long been a challenging problem because of the inherently noisy and stochastic nature of the market. In the high-frequency trading, forecasting for trading purposes is even a more challenging task, since an automated inference system is required to be both accurate and fast. In this paper, we propose a neural network layer architecture that incorporates the idea of bilinear projection as well as an attention mechanism that enables the layer to detect and focus on crucial temporal information. The resulting network is highly interpretable, given its ability to highlight the importance and contribution of each temporal instance, thus allowing further analysis on the time instances of interest. Our experiments in a large-scale limit order book data set show that a two-hidden-layer network utilizing our proposed layer outperforms by a large margin all existing state-of-the-art results coming from much deeper architectures while requiring far fewer computations.
机译:由于市场固有的嘈杂和随机性,财务时间序列预测长期以来一直是一个具有挑战性的问题。在高频交易中,出于交易目的进行预测甚至是更具挑战性的任务,因为要求自动推理系统既要准确又要快速。在本文中,我们提出了一种神经网络层体系结构,该体系结构包含了双线性投影的思想以及一种使该层能够检测并关注关键时间信息的注意力机制。给出的网络具有突出显示每个时间实例的重要性和贡献的能力,因此可以高度解释,从而可以对感兴趣的时间实例进行进一步分析。我们在大规模极限订单簿数据集中的实验表明,利用我们提议的层的两层网络在很大程度上优于所有更先进的体系结构,同时所需的计算量也大大少于现有的所有最新结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号