首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Multiple $psi$ -Type Stability of Cohen–Grossberg Neural Networks With Both Time-Varying Discrete Delays and Distributed Delays
【24h】

Multiple $psi$ -Type Stability of Cohen–Grossberg Neural Networks With Both Time-Varying Discrete Delays and Distributed Delays

机译:时变离散的Cohen-Grossberg神经网络的多个 $ psi $ 型稳定性延误和分布式延误

获取原文
获取原文并翻译 | 示例

摘要

In this paper, multiple psi-type stability of Cohen-Grossberg neural networks (CGNNs) with both timevarying discrete delays and distributed delays is investigated. By utilizing psi-type functions combined with a new psi-type integral inequality for treating distributed delay terms, some sufficient conditions are obtained to ensure that multiple equilibrium points are psi-type stable for CGNNs with discrete and distributed delays, where the distributed delays include bounded and unbounded delays. These conditions of CGNNs with different output functions are less restrictive. More specifically, the algebraic criteria of the generalized model are applicable to several well-known neural network models by taking special parameters, and multiple different output functions are introduced to replace some of the same output functions, which improves the diversity of output results for the design of neural networks. In addition, the estimation of relative convergence rate of psi-type stability is determined by the parameters of CGNNs and the selection of psi-type functions. As a result, the existing results on multistability and monostability can be improved and extended. Finally, some numerical simulations are presented to illustrate the effectiveness of the obtained results.
机译:本文研究了具有时变离散延迟和分布延迟的Cohen-Grossberg神经网络(CGNN)的多种psi型稳定性。通过利用psi型函数与新的psi型积分不等式相结合来处理分布式时延项,可以获得一些充分的条件以确保具有离散和分布式时延的CGNN的多个平衡点都是psi型稳定的,其中分布式时延包括无限和无限的延迟。具有不同输出功能的CGNN的这些条件限制较少。更具体地说,广义模型的代数准则通过采用特殊参数可适用于几个著名的神经网络模型,并且引入了多个不同的输出函数来代替某些相同的输出函数,从而提高了输出结果的多样性。神经网络的设计。此外,通过CGNNs的参数和psi型函数的选择来确定psi型稳定性的相对收敛速度的估计。结果,可以改善和扩展关于多稳定性和单稳定性的现有结果。最后,通过一些数值模拟来说明所获得结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号