首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Modulation Classification Based on Signal Constellation Diagrams and Deep Learning
【24h】

Modulation Classification Based on Signal Constellation Diagrams and Deep Learning

机译:基于信号星座图和深度学习的调制分类

获取原文
获取原文并翻译 | 示例

摘要

Deep learning (DL) is a new machine learning (ML) methodology that has found successful implementations in many application domains. However, its usage in communications systems has not been well explored. This paper investigates the use of the DL in modulation classification, which is a major task in many communications systems. The DL relies on a massive amount of data and, for research and applications, this can be easily available in communications systems. Furthermore, unlike the ML, the DL has the advantage of not requiring manual feature selections, which significantly reduces the task complexity in modulation classification. In this paper, we use two convolutional neural network (CNN)-based DL models, AlexNet and GoogLeNet. Specifically, we develop several methods to represent modulated signals in data formats with gridlike topologies for the CNN. The impacts of representation on classification performance are also analyzed. In addition, comparisons with traditional cumulant and ML-based algorithms are presented. Experimental results demonstrate the significant performance advantage and application feasibility of the DL-based approach for modulation classification.
机译:深度学习(DL)是一种新的机器学习(ML)方法,已在许多应用程序领域中找到成功的实现。但是,尚未很好地探讨其在通信系统中的用法。本文研究了DL在调制分类中的使用,这是许多通信系统中的一项主要任务。 DL依赖于大量数据,并且对于研究和应用而言,这可以在通信系统中轻松获得。此外,与ML不同,DL的优点是不需要手动选择特征,从而大大降低了调制分类中的任务复杂性。在本文中,我们使用两个基于卷积神经网络(CNN)的DL模型AlexNet和GoogLeNet。具体来说,我们开发了几种方法来表示具有CNN网格状拓扑结构的数据格式的调制信号。还分析了表示形式对分类性能的影响。此外,还介绍了与传统累积量和基于ML的算法的比较。实验结果证明了基于DL的调制分类方法的显着性能优势和应用可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号