首页> 外文期刊>Neural Network World >DEEP LEARNING FOR STOCK MARKET TRADING: A SUPERIOR TRADING STRATEGY?
【24h】

DEEP LEARNING FOR STOCK MARKET TRADING: A SUPERIOR TRADING STRATEGY?

机译:深度学习股票市场交易:卓越的交易策略?

获取原文
获取原文并翻译 | 示例

摘要

Deep-learning initiatives have vastly changed the analysis of data. Complex networks became accessible to anyone in any research area. In this paper we are proposing a deep-learning long short-term memory network (LSTM) for automated stock trading. A mechanical trading system is used to evaluate its performance. The proposed solution is compared to traditional trading strategies, i.e., passive and rule-based trading strategies, as well as machine learning classifiers. We have discovered that the deep-learning long short-term memory network has outperformed other trading strategies for the German blue-chip stock, BMW, during the 2010-2018 period.
机译:深度学习计划极大地改变了数据分析。任何研究领域的任何人都可以访问复杂的网络。在本文中,我们提出了一种用于自动股票交易的深度学习长期短期记忆网络(LSTM)。机械交易系统用于评估其性能。将所提出的解决方案与传统的交易策略(即被动和基于规则的交易策略)以及机器学习分类器进行比较。我们发现,深度学习的长期短期记忆网络在2010-2018年期间的表现优于德国蓝筹股宝马的其他交易策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号