首页> 外文期刊>Neural Network World >ASSESSING EMPIRICAL SOFTWARE DATA WITH MLP NEURAL NETWORKS
【24h】

ASSESSING EMPIRICAL SOFTWARE DATA WITH MLP NEURAL NETWORKS

机译:使用MLP神经网络评估经验软件数据

获取原文
获取原文并翻译 | 示例

摘要

Software measurements provide developers and software managers with information on various aspects of software systems, such as effectiveness, functionality, maintainability, or the effort and cost needed to develop a software system. Based on collected data, models capturing some aspects of software development process can be constructed. A good model should allow software professionals to not only evaluate current or completed projects but also predict future projects with an acceptable degree of accuracy. Artificial neural networks employ a parallel distributed processing paradigm for learning of system and data behavior. Some network models, such as multilayer perceptrons, can be used to build models with universal approximation capabilities. This paper describes an application in which neural networks are used to capture the behavior of several sets of software development related data. The goal of the experiment is to gain an insight into the modeling of software data, and to evaluate the quality of available data sets and some existing conventional models.
机译:软件度量为开发人员和软件经理提供了有关软件系统各个方面的信息,例如有效性,功能性,可维护性或开发软件系统所需的工作量和成本。基于收集的数据,可以构建捕获软件开发过程某些方面的模型。一个好的模型应该使软件专业人员不仅可以评估当前或已完成的项目,而且可以以可接受的准确性来预测未来的项目。人工神经网络采用并行分布式处理范例来学习系统和数据行为。某些网络模型(例如多层感知器)可用于构建具有通用逼近功能的模型。本文介绍了一种应用程序,其中使用神经网络来捕获多套与软件开发相关的数据的行为。该实验的目的是深入了解软件数据的建模,并评估可用数据集和某些现有常规模型的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号