首页> 外文期刊>Neural Network World >A HYPER-HEURISTIC FOR ADAPTIVE SCHEDULING IN COMPUTATIONAL GRIDS
【24h】

A HYPER-HEURISTIC FOR ADAPTIVE SCHEDULING IN COMPUTATIONAL GRIDS

机译:计算网格自适应调度的超启发式

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present the design and implementation of an hyper-heuristic for efficiently scheduling independent jobs in Computational Grids. An efficient scheduling of jobs to Grid resources depends on many parameters, among others, the characteristics of the resources and jobs (such as computing capacity, consistency of computing, workload, etc.). Moreover, these characteristics change over time due to the dynamic nature of Grid environment, therefore the planning of jobs to resources should be adaptively done. Existing ad hoc scheduling methods (batch and immediate mode) have shown their efficacy for certain types of resource and job characteristics. However, as stand alone methods, they are not able to produce the best planning of jobs to resources for different types of Grid resources and job characteristics. In this work we have designed and implemented a hyper-heuristic that uses a set of ad hoc (immediate and batch mode) scheduling methods to provide the scheduling of jobs to Grid resources according to the Grid and job characteristics. The hyper-heuristic is a high level algorithm, which examines the state and characteristics of the Grid system (jobs and resources), and selects and applies the ad hoc method that yields the best planning of jobs. The resulting hyper-heuristic based scheduler can be thus used to develop network-aware applications that need efficient planning of jobs to resources. The hyper-heuristic has been tested and evaluated in a dynamic setting through a prototype of a Grid simulator. The experimental evaluation showed the usefulness of the hyper-heuristic for planning of jobs to resources as compared to planning without knowledge of the resource and job characteristics.
机译:在本文中,我们介绍了一种超启发式算法的设计和实现,以高效地调度计算网格中的独立作业。对Grid资源的作业的有效调度取决于许多参数,其中包括资源和作业的特征(例如计算能力,计算的一致性,工作量等)。此外,由于网格环境的动态性质,这些特性会随时间而变化,因此,应该自适应地完成对资源的作业计划。现有的临时计划方法(批处理和即时模式)已显示出它们对某些类型的资源和工作特征的功效。但是,作为独立方法,它们无法针对不同类型的Grid资源和作业特征针对资源进行作业的最佳计划。在这项工作中,我们设计并实现了一种超启发式方法,该方法使用一组临时(立即模式和批处理模式)调度方法来根据Grid和作业特征向Grid资源提供作业调度。超启发式算法是一种高级算法,它检查Grid系统的状态和特征(作业和资源),并选择并应用产生最佳作业计划的即席方法。由此产生的基于超启发式的调度程序可用于开发需要有效计划资源作业的网络感知应用程序。超启发式已通过网格模拟器的原型在动态设置下进行了测试和评估。实验评估表明,与不了解资源和工作特征的计划相比,超启发式方法对于将工作计划为资源是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号