首页> 外文期刊>Neural Network World >INTELLIGENT WEB CACHING USING MACHINE LEARNING METHODS
【24h】

INTELLIGENT WEB CACHING USING MACHINE LEARNING METHODS

机译:使用机器学习方法进行智能Web培训

获取原文
获取原文并翻译 | 示例

摘要

Web caching is a technology to improve network traffic on the Internet. It is a temporary storage of Web objects for later retrieval. Three significant advantages of Web caching include reduction in bandwidth consumption, server load, and latency. These advantages make the Web to be less expensive yet it provides better performance. This research aims to introduce an advanced machine learning method for a classification problem in Web caching that requires a decision to cache or not to cache Web objects in a proxy cache server. The challenges in this classification problem include the issues in identifying attributes ranking and improve the classification accuracy significantly. This research includes four methods that are Classification and Regression Trees (CART), Multivariate Adaptive Regression Splines (MARS), Random Forest (RF) and TreeNet (TN) for classification on Web caching. The experimental results reveal that CART performed extremely well in classifying Web objects from the existing log data with a size of Web objects as a significant attribute for Web cache performance enhancement.
机译:Web缓存是一种改善Internet上网络流量的技术。它是Web对象的临时存储,供以后检索。 Web缓存的三个重要优点包括减少带宽消耗,减少服务器负载和延迟。这些优点使Web变得更便宜,但它提供了更好的性能。这项研究旨在针对Web缓存中的分类问题引入一种高级的机器学习方法,该方法需要决定是否在代理缓存服务器中缓存Web对象。该分类问题中的挑战包括识别属性排名和显着提高分类准确性的问题。这项研究包括四种方法,分别是分类和回归树(CART),多元自适应回归样条(MARS),随机森林(RF)和TreeNet(TN),用于在Web缓存上进行分类。实验结果表明,CART在将现有日志数据中的Web对象进行分类方面表现非常出色,其中Web对象的大小是Web缓存性能增强的重要属性。

著录项

  • 来源
    《Neural Network World》 |2011年第5期|p.429-452|共24页
  • 作者单位

    Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia;

    Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia;

    Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, WA, USA Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic;

    Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    classification of web objects; web caching; machine learning methods;

    机译:网络对象的分类;网络缓存;机器学习方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号