首页> 外文期刊>Neural Network World >A NEURAL NETWORK APPROACH FOR ASSESSING THE RELATIONSHIP BETWEEN GRIP STRENGTH AND HAND ANTHROPOMETRY
【24h】

A NEURAL NETWORK APPROACH FOR ASSESSING THE RELATIONSHIP BETWEEN GRIP STRENGTH AND HAND ANTHROPOMETRY

机译:用于评估握力和手掌测距关系的神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

This study aimed to determine grip strength data for Turkish dentistry students and developed prediction models that allow: i) investigation of the relationship between grip strength and hand anthropometry using artificial neural networks (ANNs) and stepwise regression analysis, ii) prediction of the grip strength of Turkish dentistry students, and iii) assessment of the potential impact of hand anthropometric variables on grip strength. The study included 153 right-handed dentistry students, consisting of 81 males and 72 females. From 44 anthropometric and biomechanical measurements obtained from the right hands of the participants; five anthropometric measurements were selected for ANN and regression modeling using stepwise regression analysis. We included stepwise regression analysis results to assess the predictive power of the neural network approach, in comparison to a classical statistical approach. When the model accuracy was calculated based on the coefficient of determination (R-2), the root mean squared error (RMSE) and the mean absolute error (MAE) values for each of the models, ANN showed greater predictive accuracy than regression analysis, as demonstrated by experimental results. For the best performing ANN model, the testing values of the models correlated well with actual values, with a coefficient of determination (R-2) of 0.858. Using the best performing ANN model, sensitivity analysis was applied to determine the effects of hand dimensions on grip strength and to rank these dimensions in order of importance. The results suggest that the three most sensitive input variables are the forearm length, the hand breadth and the finger circumference at the first joint of digit 5 and that the ANNs are promising techniques for predicting hand grip strength based on hand breadth, finger breadth, hand length, finger circumference and forearm length.
机译:这项研究旨在确定土耳其牙科学生的握力强度数据,并开发了以下预测模型:i)使用人工神经网络(ANN)和逐步回归分析研究握力与手部人体测量学之间的关系,ii)预测握力土耳其牙科专业的学生,​​以及iii)评估手部人体测量学变量对握力的潜在影响。该研究包括153名右撇子牙科学生,其中包括81名男性和72名女性。从参与者的右手获得的44项人体测量学和生物力学测量结果;选择5种人体测量值进行ANN和使用逐步回归分析的回归建模。与传统的统计方法相比,我们纳入了逐步回归分析结果,以评估神经网络方法的预测能力。根据确定系数(R-2),均方根误差(RMSE)和平均绝对误差(MAE)值计算模型准确性时,ANN的预测准确性要高于回归分析,实验结果证明。对于性能最佳的ANN模型,模型的测试值与实际值具有很好的相关性,确定系数(R-2)为0.858。使用性能最佳的ANN模型,应用灵敏度分析来确定手部尺寸对握力的影响,并按重要性顺序对这些尺寸进行排名。结果表明,三个最敏感的输入变量是前臂长度,手的宽度和手指数字5的第一个关节处的手指围度,并且ANN是基于手的宽度,手指的宽度,手来预测手握力的有前途的技术长度,手指周长和前臂长度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号