首页> 外文期刊>Neural Computing and Applications >An expert system for predicting Manning’s roughness coefficient in open channels by using gene expression programming
【24h】

An expert system for predicting Manning’s roughness coefficient in open channels by using gene expression programming

机译:通过基因表达程序预测明渠曼宁粗糙度系数的专家系统

获取原文
获取原文并翻译 | 示例

摘要

Manning’s roughness coefficient (n) has been widely used in the estimation of flood discharges or depths of flow in natural channels. Accurate estimation of Manning’s roughness coefficient is essential for the computation of flow rate, velocity. Conventional formulae that are greatly based on empirical methods lack in providing high accuracy for the prediction of Manning’s roughness coefficient. Consequently, new and accurate techniques are still highly demanded. In this study, gene expression programming (GEP) is used to estimate the Manning’s roughness coefficient. The estimated value of the roughness coefficient is used in Manning’s equation to compute the flow parameters in open-channel flows in order to carry out a comparison between the proposed GEP-based approach and the conventional ones. Results show that computed discharge using estimated value of roughness coefficient by GEP is in good agreement (±10%) with the experimental results compared to the conventional formulae (R 2 = 0.97 and RMSE = 0.0034 for the training data and R 2 = 0.94 and RMSE = 0.086 for the testing data).
机译:曼宁的粗糙度系数(n)已被广泛用于估算洪水流量或自然河道的水深。曼宁粗糙度系数的准确估算对于计算流速,速度至关重要。很大程度上基于经验方法的常规公式缺乏为Manning粗糙度系数的预测提供高精度的方法。因此,仍然强烈要求新的和精确的技术。在这项研究中,基因表达程序(GEP)用于估算曼宁的粗糙度系数。粗糙度系数的估计值用于Manning方程中,以计算明渠流动中的流动参数,以便对基于GEP的方法与传统方法进行比较。结果表明,与常规公式相比,使用GEP粗糙度系数估计值计算的放电量与实验结果吻合良好(±10%)(对于训练数据,R 2 = 0.97,RMSE = 0.0034,R 2 = 0.94和RMSE = 0.086的测试数据)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号