首页> 外文期刊>Neural Computing and Applications >A fast fuzzy support vector machine based on information granulation
【24h】

A fast fuzzy support vector machine based on information granulation

机译:基于信息粒化的快速模糊支持向量机

获取原文
获取原文并翻译 | 示例

摘要

In order to improve the efficiency of fuzzy support vector machine training high-dimensional and large-scale dataset, a fast fuzzy support vector machine based on information granulation (FSVM-FIG) is proposed. Firstly, the training set is divided into some granules by fuzzy C-means, including pure granules and mixed granules. Since most support vectors are close to the border of two classes of samples, we believe that the support vectors must be in mixed granules, so we save only the mixed granules for new training set. In addition, because there are some noises and outliers on the border of two classes of samples, we use the k-nearest neighbor algorithm to remove noises and outliers. Finally, we use fuzzy support vector machine based on cluster hyperplane to train the final training set. Experimental results show that FSVM-FIG can not only improve the training efficiency of the training sets that contain noises and outliers, but also ensure a certain degree of prediction accuracy.
机译:为了提高模糊支持向量机训练高维大规模数据集的效率,提出了一种基于信息粒度的快速模糊支持向量机(FSVM-FIG)。首先,通过模糊C-均值将训练集分为一些颗粒,包括纯颗粒和混合颗粒。由于大多数支持向量都接近两类样本的边界,因此我们认为支持向量必须位于混合颗粒中,因此我们仅将混合颗粒保存用于新的训练集。另外,由于两类样本的边界上存在一些噪声和离群值,因此我们使用k最近邻算法来去除噪声和离群值。最后,我们使用基于聚类超平面的模糊支持向量机训练最终训练集。实验结果表明,FSVM-FIG不仅可以提高包含噪声和离群值的训练集的训练效率,而且可以保证一定程度的预测精度。

著录项

  • 来源
    《Neural Computing and Applications》 |2013年第1期|139-144|共6页
  • 作者单位

    School of Computer Science and Technology China University of Mining and Technology">(1);

    Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Science">(2);

    School of Computer Science and Technology China University of Mining and Technology">(1);

    School of Computer Science and Technology China University of Mining and Technology">(1);

    School of Computer Science and Technology China University of Mining and Technology">(1);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fuzzy support vector machine; Fuzzy C-means; Information granulation;

    机译:模糊支持向量机;模糊C均值;信息制粒;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号