首页> 外文期刊>Neural Computing and Applications >PSO-based K-Means clustering with enhanced cluster matching for gene expression data
【24h】

PSO-based K-Means clustering with enhanced cluster matching for gene expression data

机译:基于PSO的K-Means聚类,具有增强的基因表达数据聚类匹配功能

获取原文
获取原文并翻译 | 示例

摘要

An integration of particle swarm optimization (PSO) and K-Means algorithm is becoming one of the popular strategies for solving clustering problem, especially unsupervised gene clustering. It is known as PSO-based K-Means clustering algorithm (PSO-KM). However, this approach causes the dimensionality of clustering problem to expand in PSO search space. The sequence of clusters represented in particle is not evaluated. This study proposes an enhanced cluster matching to further improve PSO-KM. In the proposed scheme, prior to the PSO updating process, the sequence of cluster centroids encoded in a particle is matched with the corresponding ones in the global best particle with the closest distance. On this basis, the sequence of centroids is evaluated and optimized with the closest distance. This makes particles to perform better in searching the optimum in collaborative manner. Experimental results show that this proposed scheme is more effective in reducing clustering error and improving convergence rate.
机译:粒子群优化(PSO)和K-Means算法的集成正在成为解决聚类问题,尤其是无监督基因聚类的流行策略之一。它被称为基于PSO的K均值聚类算法(PSO-KM)。但是,这种方法导致聚类问题的维数在PSO搜索空间中扩展。不评估粒子中表示的簇的顺序。这项研究提出了增强的聚类匹配,以进一步改善PSO-KM。在提出的方案中,在PSO更新过程之前,将粒子中编码的聚类质心的序列与距离最近的全局最佳粒子中的相应质心进行匹配。在此基础上,以最接近的距离评估和优化质心序列。这使粒子在以协作方式搜索最佳值时表现更好。实验结果表明,该方案在减少聚类误差和提高收敛速度方面更为有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号