首页> 外文期刊>Neural Computing and Applications >Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems
【24h】

Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems

机译:基于极限学习机的预测器,用于电力系统的实时频率稳定性评估

获取原文
获取原文并翻译 | 示例

摘要

As a novel and promising learning technology, extreme learning machine (ELM) is featured by its much faster training speed and better generalization performance over traditional learning techniques. ELM has found applications in solving many real-world engineering problems, including those in electric power systems. Maintaining frequency stability is one of the essential requirements for secure and reliable operations of a power system. Conventionally, its assessment involves solving a large set of nonlinear differential–algebraic equations, which is very time-consuming and can be only carried out off-line. This paper firstly reviews the ELM’s applications in power engineering and then develops an ELM-based predictor for real-time frequency stability assessment (FSA) of power systems. The inputs of the predictor are power system operational parameters, and the output is the frequency stability margin that measures the stability degree of the power system subject to a contingency. By off-line training with a frequency stability database, the predictor can be online applied for real-time FSA. Benefiting from the very fast speed of ELM, the predictor can be online updated for enhanced robustness and reliability. The developed predictor is examined on the New England 10-generator 39-bus test system, and the simulation results show that it can exactly (within acceptable errors) and rapidly (within very small computing time) predict the frequency stability.
机译:作为一种新颖而有前途的学习技术,极限学习机(ELM)的特点是与传统学习技术相比,其更快的训练速度和更好的泛化性能。 ELM已找到解决许多实际工程问题的应用,包括电力系统中的问题。维持频率稳定性是电力系统安全可靠运行的基本要求之一。按照惯例,它的评估涉及求解一大套非线性微分-代数方程,这非常耗时,并且只能离线进行。本文首先回顾了ELM在电力工程中的应用,然后开发了基于ELM的预测器,用于电力系统的实时频率稳定性评估(FSA)。预测器的输入是电力系统的运行参数,输出是频率稳定度余量,该余量用于衡量受意外事件影响的电力系统的稳定度。通过使用频率稳定性数据库进行离线培训,可以将预测器在线应用到实时FSA。得益于ELM的极快速度,可以在线更新预测器以增强鲁棒性和可靠性。在新英格兰10发电机39总线测试系统上检查了已开发的预测器,仿真结果表明它可以准确地(在可接受的误差范围内)并且快速地(在很小的计算时间内)预测频率稳定性。

著录项

  • 来源
    《Neural Computing and Applications》 |2013年第4期|501-508|共8页
  • 作者单位

    Center for Intelligent Electricity Networks The University of Newcastle">(1);

    Nanjing University of Science and Technology">(2);

    State Grid Electric Power Research Institute (SGEPRI)">(3);

    Center for Intelligent Electricity Networks The University of Newcastle">(1);

    Center for Intelligent Electricity Networks The University of Newcastle">(1);

    Center for Intelligent Electricity Networks The University of Newcastle">(1);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Extreme learning machine (ELM); Power system; Frequency stability;

    机译:极限学习机(ELM);电源系统;频率稳定度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号