首页> 外文期刊>Neural Computing and Applications >Text categorization based on regularization extreme learning machine
【24h】

Text categorization based on regularization extreme learning machine

机译:基于正则化极限学习机的文本分类

获取原文
获取原文并翻译 | 示例

摘要

This article proposes a novel approach for text categorization based on a regularization extreme learning machine (RELM) in which its weights can be obtained analytically, and a bias-variance trade-off could be achieved by adding a regularization term into the linear system of single-hidden layer feedforward neural networks. To fit the input scale of RELM, the latent semantic analysis was used to represent text for dimensionality reduction. Moreover, a classification algorithm based on RELM was developed including the uni-label (i.e., a document can only be assigned to a unique category) and multi-label (i.e., a document can be assigned to multiple categories simultaneously) situations. The experimental results in two benchmarks show that the proposed method can produce good performance in most cases, and it could learn faster than popular methods such as feedforward neural networks or support vector machine.
机译:本文提出了一种基于正则化极限学习机(RELM)的文本分类的新方法,该方法可以通过权重分析获得权重,并且可以通过将正则化项添加到单个线性系统中来实现偏差方差的折衷隐藏层前馈神经网络。为了适应RELM的输入规模,使用潜在语义分析来表示文本以减少维数。此外,开发了基于RELM的分类算法,包括单标签(即,文档只能被分配到唯一类别)和多标签(即,文档可以同时被分配到多个类别)情况。在两个基准测试中的实验结果表明,该方法在大多数情况下都能产生良好的性能,并且比前馈神经网络或支持向量机等流行方法学习速度更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号