首页> 外文期刊>Neural Computing and Applications >An extreme learning machine approach for speaker recognition
【24h】

An extreme learning machine approach for speaker recognition

机译:一种用于说话人识别的极限学习机方法

获取原文
获取原文并翻译 | 示例

摘要

Over the last two decades, automatic speaker recognition has been an interesting and challenging problem to speech researchers. It can be classified into two different categories, speaker identification and speaker verification. In this paper, a new classifier, extreme learning machine, is examined on the text-independent speaker verification task and compared with SVM classifier. Extreme learning machine (ELM) classifiers have been proposed for generalized single hidden layer feedforward networks with a wide variety of hidden nodes. They are extremely fast in learning and perform well on many artificial and real regression and classification applications. The database used to evaluate the ELM and SVM classifiers is ELSDSR corpus, and the Mel-frequency Cepstral Coefficients were extracted and used as the input to the classifiers. Empirical studies have shown that ELM classifiers and its variants could perform better than SVM classifiers on the dataset provided with less training time.
机译:在过去的二十年中,说话人自动识别一直是语音研究人员一个有趣且充满挑战的问题。它可以分为两个不同的类别,说话者识别和说话者验证。本文研究了一种新的分类器,极限学习机,用于独立于文本的说话者验证任务,并与SVM分类器进行了比较。已经针对具有多种隐藏节点的广义单隐藏层前馈网络提出了极限学习机(ELM)分类器。它们学习速度极快,并且在许多人工和真实的回归和分类应用程序中表现出色。用于评估ELM和SVM分类器的数据库是ELSDSR语料库,并且提取了梅尔频率倒谱系数并将其用作分类器的输入。实证研究表明,在提供较少训练时间的情况下,ELM分类器及其变体的性能要优于SVM分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号