首页> 外文期刊>Neural Computing and Applications >Emotion recognition improvement using normalized formant supplementary features by hybrid of DTW-MLP-GMM model
【24h】

Emotion recognition improvement using normalized formant supplementary features by hybrid of DTW-MLP-GMM model

机译:DTW-MLP-GMM模型的混合使用归一化共振峰补充特征改进情绪识别

获取原文
获取原文并翻译 | 示例

摘要

In recent four decades, enormous efforts have been focused on developing automatic speech recognition systems to extract linguistic information, but much research is needed to decode the paralinguistic information such as speaking styles and emotion. The effect of using first three normalized formant frequencies and pitch frequency as supplementary features on improving the performance of an emotion recognition system that uses Mel-frequency cepstral coefficients and energy-related features, as the components of feature vector, is investigated in this paper. The normalization is performed using a dynamic time warping-multi-layer perceptron hybrid model after determining the frequency range that is most affected by emotion. To reduce the number of features, fast correlation-based filter and analysis of variations (ANOVA) methods are used in this study. Recognizing of the emotional states is performed using Gaussian mixture model. Experimental results show that first formant (F1)-based warping and ANOVA-based feature selection result in the best performance as compared to other simulated systems in this study, and the average emotion recognition accuracy is acceptable as compared to most of the recent researches in this field.
机译:在最近的四十年中,已经集中精力开发自动语音识别系统以提取语言信息,但是需要进行大量研究以解码诸如语言风格和情感之类的语言信息。本文研究了使用前三个归一化共振峰频率和基音频率作为补充特征对改善以梅尔频率倒谱系数和能量相关特征为特征向量的情绪识别系统的性能的影响。在确定受情感影响最大的频率范围后,使用动态时间扭曲多层感知器混合模型执行标准化。为了减少特征的数量,本研究使用了基于快速相关性的滤波器和变异分析(ANOVA)方法。情绪状态的识别是使用高斯混合模型进行的。实验结果表明,与本研究中的其他模拟系统相比,基于第一共振峰(F1)的变形和基于ANOVA的特征选择导致最佳性能,并且与大多数最新研究相比,平均情感识别准确度是可以接受的这个领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号